
CS230: Deep Learning
Fall Quarter 2019
Stanford University

Midterm Examination
180 minutes

Problem Full Points Your Score

1 Multiple Choice 14

2 Short Answers 38

3 Convolutional Architectures 12

4 Numpy Coding 10

5 Backpropagation 32

6 Fun with Activation Functions 11

7 Softmax (Bonus) 7

Total 124

The exam contains 32 pages including this cover page.

• This exam is closed book i.e. no laptops, notes, textbooks, etc. during the
exam. However, you may use one A4 sheet (front and back) of notes as reference.

• In all cases, and especially if you’re stuck or unsure of your answers, explain your
work, including showing your calculations and derivations! We’ll give partial
credit for good explanations of what you were trying to do.

Name:

SUNETID: @stanford.edu

The Stanford University Honor Code:
I attest that I have not given or received aid in this examination, and that I have done my
share and taken an active part in seeing to it that others as well as myself uphold the spirit
and letter of the Honor Code.

Signature:

1

CS230

.

Question 1 (Multiple Choice Questions, 14 points)

For each of the following questions, circle the letter of your choice. There is only ONE correct
choice unless explicitly mentioned. No explanation is required.

(a) (2 points) A 2-layer neural network with 5 neurons in each layer has a total of 60
parameters (i.e. weights and biases)

(i) True

(ii) False

Solution: True

(b) (2 points) Given an input volume of shape (10, 10, 3), you consider using one of the
two following layers:

– Fully-connected layer with 2 neurons, with biases

– Convolutional layer with three 2x2 filters (with biases) with 0 padding and a stride
of 2

If you use the fully-connected layer, the input volume is “flattened” into a column
vector before being fed into the layer. What is the difference in the number of
trainable parameters between these two layers?

(i) The fully-connected layer has 566 fewer parameters

(ii) The convolutional layer has 566 fewer parameters

(iii) The convolutional layer has 564 fewer parameters

(iv) The convolutional layer has 563 fewer parameters

(v) None of the above

2

CS230

Solution: iv

(c) (2 points) You decide to use the convolutional layer. What will be the size of the
output of the convolutional layer described above?

(i) (5, 5, 4)

(ii) (5, 5, 3)

(iii) (4, 4, 4)

(iv) (4, 4, 3)

(v) None of the above

Solution: ii

(d) (2 points) Assume the vectors v and u are defined as numpy arrays. The vectors are
multiplied together using the * operator: v*u. Which of the following shapes are valid,
meaning the operation will succeed without errors? (Circle all that apply)

(i) v = (5, 1), u = (5, 1)

(ii) v = (1, 5), u = (50, 5)

(iii) v = (1, 1), u = (50, 5)

(iv) v = (1, 5), u = (1, 50)

(v) None of the above

Solution: i, ii, iii

(e) (2 points) Which of the following is true about the vanishing gradient problem?
(Circle all that apply)

(i) Tanh is usually preferred over sigmoid because it doesn’t suffer from vanishing
gradients

(ii) Vanishing gradient causes deeper layers to learn more slowly than earlier layers

(iii) Leaky ReLU is less likely to suffer from vanishing gradients than sigmoid

(iv) Xavier initialization can help prevent the vanishing gradient problem

(v) None of the above

3

CS230

Solution: iii, iv

(f) (2 points) The backpropagated gradient through a tanh non-linearity is always smaller
or equal in magnitude than the upstream gradient. (Recall: if z = tanh(x) then
∂z
∂x

= 1− z2)

(i) True

(ii) False

Solution: True

(g) (2 points) Consider a trained logistic regression. Its weight vector is W and its test
accuracy on a given data set is A. Assuming there is no bias, dividing W by 2 won’t
change the test accuracy.

(i) True

(ii) False

Solution: True

4

CS230

Question 2 (Short Answers, 38 points)

The questions in this section can be answered in 2-4 sentences. Please be concise in your
responses.

(a) (2 points) The gradient estimated during a step of mini-batch gradient descent has on
average a lower bias when the data is i.i.d. (independent and identically distributed).
True or False? Explain why.

Solution: True. The examples in a batch should be i.i.d. because mini-batch
gradient descent uses an empirical estimate of the gradient from a small batch. If
the examples are correlated, then the gradient estimates will become biased and
the model will fail to learn.

(b) (2 points) You have two data sets of similar size for a binary classification task.
However, one contains almost entirely positive examples, and the other contains only
negative examples. You would like to use both sets to train your model. Describe a
scenario in which combining these two data sets could lead to a failure of the model to
learn.

Solution: Imagine training on mini-batches constructed from dataset 1 (mostly
positive examples, then training on mini-batches from dataset 2 (only negative
examples). The model will likely forget what it learned from the positive examples
and will learn to always predict negative examples.

(c) (2 points) Why do the layers in a deep architecture need to be non-linear?

Solution: Without nonlinear activation functions, each layer simply performs a
linear mapping of the input to the output of the layer. Because linear functions are
closed under composition, this is equivalent to having a single (linear) layer. Thus,

5

CS230

no matter how many such layers exist, the network can only learn linear functions.

(d) (3 points) Cite 3 layers commonly used in a convolutional neural network.

Solution: CONV, POOL, FC, DROPOUT, etc.

(e) (4 points) Alice recommends the use of convolutional neural networks instead of
fully-connected networks for image recognition tasks since convolutions can capture
the spatial relationship between nearby image pixels.

Bob points out that fully-connected layers can capture spatial information since each
neuron is connected to all of the neurons in the previous layer.

Both are correct, but describe two reasons we should prefer Alice’s approach to Bob’s.

Solution: (i) Computational tractability. (ii) Explicit hierarchical representation
of features. (iii) Reduces overfitting. (iv) Translation invariant.

(f) (2 points) You’re solving a binary classification task. The final two layers in your
network are a ReLU activation followed by a sigmoid activation. What will happen?

Solution: Using ReLU then sigmoid will cause all predictions to be positive.

(g) (2 points) You are searching the best learning rate for your model. You decide to test
the following values between 0.01 and 1:

– learning rate = 0.01

– learning rate = 0.16

– learning rate = 0.21

– learning rate = 0.84

– learning rate = 0.94

6

CS230

Is that a good method? Explain why.

Solution: No. A better method would be to use random search on a log scale.
Here, we search four values between 0.1 and 1, and search only one between 0.01
and 0.1.

(h) You are randomly (with a uniform distribution) searching for the best β1 parameter
for the Adam optimizer in the range of values [0.9; 0.999].

(i) (2 points) What is the probability of choosing β1 such that β1 < 0.94?

(ii) (2 points) What is the probability of choosing β1 such that β1 > 0.99?

(iii) (2 points) Propose a better search method to find the best β1 hyperparameter
value.

Solution:
i) 0.04

0.099

ii)0.999−0.99
0.099

iii) A better method would be to use random search on a log scale need to be
checked

(i) You’re solving a binary classification task.

(i) (2 points) You first try a logistic regression. You initialize all weights to 0.5. Is
this a good idea? Briefly explain why or why not.

7

CS230

Solution: Yes. For logistic regression with a convex cost function you’ll
have just a single optimal point and it does not matter where you start, the
starting point just changes the number of epochs to reach to that optimal
point.

(ii) (2 points) Then, you try a 4-layer neural network. You initialize all weights to
0.5. Is this a good idea? Briefly explain why or why not.

Solution: No, initializing all weights to zeros does not break the symmetry.
All hidden units will have identical influence on the cost, which will lead to
identical gradients. Thus, both neurons will evolve symmetrically throughout
training, effectively preventing different neurons from learning different things.

(j) Variations of Gradient Descent

(i) (2 points) Describe one advantage of using mini-batch gradient descent instead
of full-batch gradient descent.

Solution: less computationally expensive, faster convergence

(ii) (2 points) Describe one advantage of using mini-batch gradient descent instead
of stochastic gradient descent with batch size 1.

Solution: faster convergence, less divergence, can leverage efficient vector-
ized libraries

8

CS230

(iii) (2 points) Describe one advantage of using Adam optimizer instead of vanilla
gradient descent.

Solution: per-parameter updates lead to faster convergence, momentum
helps avoid getting stuck in saddle point

(k) Consider a model trying to learn an encoding of some input x ∈ R. The goal is to
encode the input x using z = w1x ∈ R, then accurately reconstruct the original x from
the encoded representation using x̂ = w2z ∈ R. Here, (w1, w2) ∈ R × R. The model is
trained with the squared reconstruction error:

L(W) =
1

n

n∑
i=1

(x(i) − w2w1x
(i))2

(i) (2 points) What is the set of solutions for w1 and w2 which makes loss zero?

Solution: w2w1 = 1

(ii) (3 points) Does the loss have a saddle point? Where?

9

CS230

Solution: Yes, w1 = w2 = 0

10

CS230

Question 3 Convolutional Architectures (12 points)

Consider the convolutional neural network defined by the layers in the left column below.
Fill in the shape of the output volume and the number of parameters at each layer. You can
write the shapes in the numpy format (e.g. (128,128,3)).

Notation:

• CONV5-N denotes a convolutional layer with N filters with height and width equal to
5. Padding is 2, and stride is 1.

• POOL2 denotes a 2x2 max-pooling layer with stride of 2 and 0 padding.

• FC-N denotes a fully-connected layer with N neurons

Layer Activation Volume Dimensions Number of parameters

Input 32×32× 1 0

CONV5-10

POOL2

CONV5-10

POOL2

FC10

Solution:

Layer Output Volume Shape Number of parameters

Input 32×32× 1 0

CONV5-10 32×32× 10 10×(5× 5× 1 + 1)

POOL2 16×16× 10 0

CONV5-10 16×16× 10 10×(5× 5× 10 + 1)

POOL2 8×8× 10 0

FC10 10×1 10×(8× 8× 10 + 1)

11

CS230

Question 4 (Numpy Coding, 10 points)

In this question, you will mine hard examples from a large training set. Examples for which
the model’s predictions are very different from the ground truth are called ”hard examples.”
Your goal is to sample hard examples after each training epoch, so that they could be passed
to your model for faster training and better performance.
Below, we use 0 and 1 to label the negative and positive classes, respectively. We use y hat

to denote predictions (such that y hat > 0.5 indicates predictions for the positive class) and
y to denote true labels.
Fill in the blanks in the code below. Your code should compile, so please use correct syntax.

import numpy as np

def mine_hard_examples(X, y, y_hat, min_sample_size):

"""

y_hat -- numpy array of shape (m,); model predictions

y -- numpy array of shape (m,); ground-truth labels

"""

START CODE HERE

1) Compute a vector of booleans indicating whether

or not the examples are misclassified

misclassified =

2) Compute the absolute difference between y and y_hat

absolute_difference =

3) Create a boolean vector indicating whether or not

the examples are hard given a threshold of 0.7

(i.e., misclassified with absolute_difference > 0.7)

mask =

4) Compute the sample size selected by the mask array

sample_size =

assert sample_size < len(mask)

if sample_size < min_sample_size:

5) Randomly flip 0's in mask to ensure we return

min_sample_size examples. We'll use flip_probs

to select supplemental indices to set in mask;

recall that flip_probs must sum to 1

flip_probs =

END CODE HERE

idx = np.random.choice(

len(mask),

12

CS230

min_sample_size - sample_size,

replace=False,

p=flip_probs)

mask[idx] = ~mask[idx]

return X[mask], y[mask]

Solution:

import numpy as np

def mine_hard_examples(X, y, y_hat, min_sample_size):

np.bitwise_xor(y_hat > 0.5, y), np.logical_xor,

or the ^ operator is acceptable as well below

as long as mask is converted to bool later;

misclassified = (y_hat > 0.5) != y

absolute_difference = np.abs(y - y_hat)

Bitwise anding with misclassifies is ok;

np.logical_and is also acceptable below

mask = absolute_difference > 0.7

other ways to count are also acceptable

sample_size = np.sum(mask)

assert sample_size < len(mask)

if sample_size < min_sample_size:

using np.logical_not(mask) below is also acceptable

any equivalent length of X, y, etc. is also ok;

(1 - mask) / sum(1 - mask) is also acceptable

flip_probs = ~mask / (len(mask) - sample_size)

idx = np.random.choice(

len(mask),

min_sample_size - sample_size,

replace=False,

p=flip_probs)

mask[idx] = ~mask[idx]

return X[mask], y[mask]

np.random.seed(0)

cases = [

(0, 0.3, False), # TN

(1, 0.7, True), # TP; randomly selected/flipped

(0, 0.7, True), # easy FP; randomly selected/flipped

(1, 0.3, False), # easy FN

(0, 0.7 + np.finfo(float).eps, True), # hard FP

(1, 0.3 - np.finfo(float).eps, True), # hard FN

]

13

CS230

X = np.arange(len(cases))

y = np.array([c[0] for c in cases])

y_hat = np.array([c[1] for c in cases])

actual, _ = mine_hard_examples(X, y, y_hat, 4)

expected = X[[c[2] for c in cases]].tolist()

assert actual.tolist() == expected, f'{actual} != {expected}'

14

CS230

Question 5 (Backpropagation , 32 points)

You’re trying to classify RGB images in giraffe present (1) and giraffe absent (0) using a
deep neural network. Unfortunately, your data set is imbalanced. The class counts are:

2000 images with a giraffe

200 examples with no giraffe

(a) (2 points) Name two data augmentation techniques you could use to help address the
class imbalance problem.

Solution: Gaussian blur, translation, reflection

Instead of data augmentation, you want to experiment with other techniques. Here’s
the architecture of your network:

z1 = W1x
(i) + b1

a1 = ReLU(z1)

z2 = W2a1 + b2

ŷ(i) = σ(z2)

L(i) = α ∗ y(i) ∗ log(ŷ(i)) + β ∗ (1− y(i)) ∗ log(1− ŷ(i))

J = − 1

m

m∑
i=1

L(i)

The dimensions are as follows: ŷ(i) ∈ R, y(i) ∈ R, x(i) ∈ RDx×1, W1 ∈ RDa1×Dx ,
W2 ∈ R1×Da1 . Note m is the size of the dataset and that the RGB images are flattened
into vectors of length Dx before being fed into the network.

(b) (2 points) What are the dimensions of b1 and b2?

15

CS230

Solution:
b1 ∈ RDa1×1

b2 ∈ R1×1

(c) Let’s focus on the hyperparameters α and β of the loss function.

(i) (2 points) Why are α and β useful?

Solution: Weighting how much each class contributes to the loss function
can help gradient descent because the network will take larger steps when
learning from instances of the underrepresented class. Also accepted answers
that mentioned prioritizing recall vs. precision and answers that mentioned
α, β weight the positive (giraffe) and negative (no giraffe) classes.

(ii) (4 points) What is a reasonable pair of values for (α, β)? Provide specific values
for these weightings.

Solution: α = .1, β = 1. Roughly, the ratio should be somewhere near
β = 10 ∗ α but not unreasonably large or small. Additionally, answers with
α, β ≤ 0 aren’t acceptable because these aren’t compatible with gradient
descent optimization.

(d) Backpropagation,

Hint: For these derivations, it will save you time to refer to earlier answers using
symbols. For example, gradients computed in an earlier part can be denoted δ1, δ2,
etc.

(i) (3 points) What is ∂J
∂ŷ
?

16

CS230

Solution:

− 1

m

∑
i

δ
(i)
1

where

δ
(i)
1 = α ∗ y(i)

ŷ(i)
− β ∗ (1− y(i))

1− ŷ(i)

Also accepted a vector form (without summation):

− 1

m

(
α ∗ y

ŷ
− β ∗ 1− y

1− ŷ

)
(ii) (2 points) What is ∂ŷ(i)

∂z2
?

Solution:
δ
(i)
2 = σ(z2)(1− σ(z2))

(iii) (2 points) What is ∂z2
∂a1

?

Solution:
δ
(i)
3 = W2

(iv) (3 points) What is ∂a1
∂z1

?

17

CS230

Solution:

δ
(i)
4 =

{
0 x < 0

1 x ≥ 0

(v) (2 points) What is ∂z1
∂W1

?

Solution:
δ
(i)
5 = x(i)T

(vi) (3 points)What is ∂J
∂W1

?
Hint: reuse work from previous parts.

Solution: There’s multiple ways to express this. An example:

δ6 = − 1

m

∑
i

δ
(i)
1 ∗ δ(i)2 ∗ (δ(i)3 ◦ δ(i)4) ∗ δ(i)5

Where δ
(i)
1 , δ

(i)
2 are scalars,

δ
(i)
3 , δ

(i)
4 ∈ RDa1×1,

δ
(i)
5 ∈ R1×Dx

If superscripts omitted but deltas are inside of summation, we assumed same
meaning as above.

18

CS230

Note that different dimensions for previous parts could lead to alternative
solutions. For example, element-wise multiplication not necessary if using a
diagonal matrix. Also, solutions that define δ1 as an m-vector also acceptable
because it’s possible to express this solely using matrix/vector multiplications
instead of explicitly averaging gradients using a summation.

(vii) (2 points) You decide to to add L2 regularization to this model. Write your new
cost function. Assume that the value of any regularization constant(s) is 1.

Solution:

J = − 1

m

∑
i

(
α∗ (1−y(i))∗ log(1− ŷ(i))+β ∗y(i) ∗ log(ŷ(i))

)
+∥W2∥22+∥W1∥22

Can also express weight terms using Frobenius norm and/or include a 1
2
or

1
2m

constant multiplier in front of weight norms.

(viii) (3 points) Using this new cost function, write down the update rule for W1.
Hint: You should reuse some of your work from previous parts. Assume you are
using gradient descent without optimizers. Use η as your learning rate.

Solution:
W ′

1 = W1 − η ∗ (δ6 + 2 ∗W1)

W ′
1 = (1− 2 ∗ η)W1 − η ∗ δ6

Other possible solutions depending on answer to previous part. Also accepted

19

CS230

∂J
∂W1

instead of δ6. In any case, student solution must specify gradient of ∥W2∥22
for full credit.

(ix) (2 points) Suppose you used L1 regularization instead. How would you expect
the weights learned using L1 regularization to differ from those learned using L2
regularization?

Solution: L1 weights will probably be more sparse. Another acceptable
answer is that (non-zero) L2 weights will tend to be smaller in magnitude than
the (non-zero) L1 weights since L2 penalizes much more for larger weights.

20

CS230

Question 6 (Fun with Activation Functions, 11 points)

(a) You have a dataset where each example contains two features, x1 and x2, and a binary
label. Here’s a plot of the dataset:

You want to develop a model to perform binary classification. Suppose you’re using a
small neural network with the architecture shown below.

Below is a precise definition of the network. Note h is the activation function, wi,j

denotes the jth weight in the ith hidden unit in the network, and woutput,j denotes the
jth weight in the output layer. The biases follow similar rules.

ai = h(wi,1 ∗ x1 + wi,2 ∗ x2 + bi)

21

CS230

output = f
(4∑

j=1

(aj ∗ woutput,j) + boutput

)
Note that h is the activation function for the hidden units and f is the activation
function for the output layer. For all of these questions, f is defined as:

f(x) =

{
0 x < 0

1 x >= 0

(i) (3 points) If you used the function h(x) = c ∗ x for some c ∈ R, is it possible
for this model to achieve perfect accuracy on this dataset? If so, provide a set of
weights that achieves perfect accuracy. If not, briefly explain why.

Solution: No; the decision boundary for this network would become linear
due to composition of matrix multiplication (something of the form prediction
= 1{wx+ b > 0}.

(ii) (4 points) Now assume h is a modified version of the sign function:

h(x) =

{
0 x < 0

1 x >= 0

Is it possible for this model to achieve perfect accuracy? If so, provide a set of weights
that achieves perfect accuracy. If not, briefly explain why.

Solution: The key is to have each hidden node evaluate one of the sides of the
separating square and the output layer checks that all conditions are true (or false,
depending on how the hidden weights are set). For example:
w1 = (0,−1), b1 = 2
w2 = (−1, 0), b2 = 2
w3 = (0, 1), b3 = −1
w4 = (1, 0), b4 = −1
woutput = (1, 1, 1, 1), b1 = −4

22

CS230

(b) Recall the activation functions ReLU:

ReLU(x) = max(0, x)

(i) (2 points) Consider an alternative to ReLU called Exponential Linear Unit
(ELU).

ELU(x) =

{
x x >= 0

α(ex − 1) x < 0

What is the gradient for ELU?

Solution: {
1 x >= 0

αex x < 0

(ii) (2 points) Name one advantage of using ELU over ReLU.

Solution: Non-zero gradient everywhere avoids dying ReLU problem

23

CS230

Question 7 (Bonus, Softmax, 7 points)

This is a bonus question. Please spend your time wisely.

Softmax takes in an n-dimensional vector x and outputs another n-dimensional vector
y:

yi =
exi∑
k e

xk

In this question we’re going to compute the gradient of y with respect to x. Let
δij =

∂yi
∂xj

.

(i) (3 points) Derive an expression for δii.

Hint: Recall the Quotient Rule of Calculus: Let h(x) = f(x)
g(x)

. Then

∂h

∂x
=

∂f(x)
∂x

∗ g(x)− ∂g(x)
∂x

∗ f(x)(
g(x)

)2

Solution:

δii = yi ∗ (1− yi)

(ii) (2 points) Now derive an expression for δij, where i ̸= j.

24

CS230

Solution:

δij = −yi ∗ yj

(iii) (2 points)Write a general expression for δij. Hint: Feel free to use curly brace
notation to distinguish between the two cases where i = j and i ̸= j. For a
concrete example, see how ELU was defined in the previous question.

Solution:

δij =

{
yi(1− yj) i = j

−yi ∗ yj i ̸= j

25

CS230

Extra Page 1/6

26

CS230

Extra Page 2/6

27

CS230

Extra Page 3/6

28

CS230

Extra Page 4/6

29

CS230

Extra Page 5/6

30

CS230

Extra Page 6/6

31

CS230

END OF PAPER

32

