Characterization and Localization of GNSS
Interference Events

Zixi Liu
Department of Aeronautics
Astronautics
Stanford University
1liul3220@stanford.edu

Abstract

Global Navigation Satellite System (GNSS) interference events happen around
airports could cause severe safety issues such as denial of GNSS based landings.
Current solutions such as radio direction finding technique are time-consuming.
There exists no previous research on applying deep learning algorithms to this
topic. We designed standard NN and ConvNets to take airplane’s position reports
as inputs and output a classification of whether these airplane has been jammed.
We achieved 96.7% and 97.1% fpet, score for both models we designed.

1 Introduction

GNSS has become a safety-of-life system in aviation. Losing GNSS signals on approach to land could
be catastrophic. Therefore, we want to design a system to detect the existence of GNSS interference
event and provide Air Traffic Control (ATC) situational awareness. One way to detect the existence of
jamming event is by monitoring the Automatic Dependent Surveillance—Broadcast (ADS-B) reports
broadcast by the airplane. Figure [T] shows how interference event affects ADS-B outputs.

In this project, we designed one standard neural network and one convolutional neural network to
help detect the existence of interference event. The input of standard NN is one ADS-B message
which is a (5, 1) vector, and the output is a binary classification of whether or not the given point has
been jammed: (§ = 1) for jammed point. The input of CNN is all ADS-B messages from one flight
which is represented as a (25, 25, 5) matrix, and the output indicates whether or not the flight has
been jammed.

\
(@ .
G“SS 9% $95 5\%“
G

[\

ADS-B report ADS-B report & i
with position with NO position
information information OR
WARNING
M

ATC Ground Station ATC Ground Station Jammer

Figure 1: ADS-B performance under normal circumstance versus during interference event

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

2 Related work

There exists no previous research on applying deep learning algorithms to this topic. All prior works
focus on solving the problem from signal transmissions perspective and performed some statistical
analyses.

For instance, researchers from Czech Technical University analyzed the change of Navigation
Accuracy Category — Position (NACp) probability distribution, which is an integrity feature of ADS-
B operational status message [(1)]. Similar work has also been done by researchers from New York
University [(2)]. EUROCONTROL has developed a grid probability model to calculate and generate
heatmaps for possible location of the RFI source [(3))].

3 Dataset and Features

This project uses ADS-B data queried from OpenSky Network| [(4)]. The data of this project is
structured data shown in Figurd2] Each row is one ADS-B message and we choose 5 features for
this project including latitude, longitude, altitude, time and Navigation Integrity Category (NIC).
NIC indicates the accuracy level of current position message, the higher NIC value means the more
accurate the information is.

This project collected 4.52GB excel files which contains 8,491,752 ADS-B messages from 5,484
flights. The entire dataset is split into training/validation/test set with 80%/10%/10%. Data is labeled
as jammed (y = 1) based on definition of ADS-B anomalies from 14 CFR § 91.227(c)[(5)].

5 features
icao alt time lat lon nic
x® lazcep2 769.62| 6/28/20208:33] 35.1361| -78.9462)
2
x® Jaa9951 10972.8| 6/28/20208:57[34.898 -77A2501| E
(0 |
IA033BE | 12192| 6/28/2020 13:59| 35.0003| -78<517Z| 1
IA033BE | 12192| 6/28/2020 13:59[35.0003| 478.517ZI
(m)
e |

Figure 2: Information contained by ADS-B dataset

3.1 Data Preprocessing

Our dataset has class imbalance problem. Only 8% of data were jammed during each interference
event. Specifically, there are 7,812,722 normal points and only 679,030 jammed points. Therefore,
we solved this problem by down-sampling the false class to match with the numbers of true class
data{ False : 7,812,722 True : 679,030} — {False : 679,030 True : 679,030}. Resulted in a
balanced numbers of True/False class as 50%/50%.

This dataset is normalized into zero mean and one standard deviation because all parameters shown
in Figurd?]are on different scales. Parameter "time’ is converted into time differences by subtracting
the first timestamp of the day from all timestamps. This step helps convert data type from datetime to
seconds.

3.2 Data representation for CNN

We represent the structured data of one flight into a 3 dimensional matrix in order to feed into a
ConvNet. This process is shown in Figurd3] We separated each flight path into multiple parts such
that each part contains exact 625 ADS-B data points. This number of 625 is picked based on the size
of airspace, average length of flights, and expert advice. This (625, 1) vector is then converted into
(25, 25), and because each ADS-B message has 5 features, the input data has 5 input channels similar
to RGB channels in an image. Therefore, that leads to the (25, 25, 5) matrix shown in Figur

https://opensky-network.org/data/impala

Ol ; {0]
ne ADS-B data point X &
£ NIC

Longitude

25

625*5= 25255
625 is picked based on:
size of airspace, average lengt

Latitude 5 parameters
25 Time

h of flights and expert advice.

Figure 3: Data representation from vector to 3D matrix for CNN

4 Methods

In this project we explored two different models to perform GNSS interference event detection.
Standard neural network can be used to identify whether any specific location has been affected.
ConvNet can be used to identify whether one specific flight has been jammed.

4.1 Standard Neural Network

The final model architecture is shown in Figure@ Each training example is one ADS-B data €R°*!
which contains 5 parameters. The output is 1 if that point has been jammed and O otherwise.

time

latitude

x® = [longitude

altitude
NIC

W, € (55)
b €(51)

w; € (10,5) w; € (5,10) wy € (1,5)

by € (10,1) by € (5,

1) by €(1L1)

Figure 4: Model architecture of Standard Neural Network

This model is trained by minimizing the difference between true label y and predicted result ¢ using
equation[I] One important thing we noticed is that the cost of our model tends to reach saturation
during the first few iterations. Therefore, we implement HE initialization scheme shown in equation
(] and learning rate decay from o = 0.1 — « = 0.001. These helped make sure the cost does not
stop at local minimum and converges in the end.

4.2 ConvNet

m

-1 4 . , ,
J=—> [y"10g(") = (1 = y)iog(1 —5')])
i=1
I 2
Wz[,j] = N(Oa [1—-1]) (2)

We are inspired by the idea of using ConvNet to classify images. We designed a ConvNet to classify
whether an interference event exists by looking at different types of jammed or non-jammed flights.
Figurd?)illustrates the final model architecture. The data representation process for this model is
mentioned in section 3.2

One ADS-B data point

NIC
Altitude

Longitude

Latitude

Time

25

625*5=25*25"5

4x4x5
8filters

p ‘same’

CONV2D_1 MAXPOOL_1 CONV2D_2

2x2x8
16 filters
p ‘same’

p=‘same’ p=‘same

Figure 5: Model architecture of CNN

MAXPOOL_2 FLATTEN FC Oulpul or

-5 -8

0

S Experiments/Results/Discussion

Figurdf] shows summary of key steps of experiments and corresponding results for both models. For
standard NN shown on the left hand side, each experiment is done with 950,642 training examples
and 407,418 testing examples. We decided to evaluate the result using Fo score in order to put
more weight on recall. That is because we do not want any false negatives since failing to reveal the
existence of jamming event could cause severe issue. training with 3,839 examples and testing with
1,645 flights. For CNN shown on the right hand side, each experiment is done with 3,839 training
flights and 1,645 testing flights. We decided to evaluate the result using Fy 5 score in order to put
more weight on precision. Results from confusion matrix of CNNs indicates most false points from
our CNN models come from false positives.

Experiment Detail F_beta (B =2) Experiment Detail F_beta (B = 0.5)
(Train, Test) (Train, Test)

NN with 1 hidden layer, 5 hidden units. @ = 0.776,0.778 0.8186 CNN with [conv (4x4x8) = conv (2,2,16)]. 0.714,0.706 0.7399
0.01. Random initialization. One fully connected layer. 100 epochs,
batch size =32.

NN with 1 hidden layer, 5 hidden units. &« = 0.912,0.913 0.9396

0.01. He initialization. CNN with [conv (4x4x8) = conv (2,2,16)]. 0.939, 0.936 0.9177
One fully connected layer. 100 epochs,

NN with 1 hidden layer, 5 hidden units. 0.943,0.944 0.9552 batch size = 64.

learning rate decay a = 0.1 — a = 0.001.

He initialization. CNN with [conv (4x4x8) - max pooling 0.963, 0.9572 0.9536
(8,8,8) = conv (2,2,16)]. One fully

NN with 2 hidden layer, each has 5 hidden 0.918,0.912 0.8968 connected layer. 100 epochs, batch size =

units. learning rate decay a = 0.1 — a = 0.001. 64.

He initialization.
CNN with [conv (4x4x8) = max poolin Iy b

NN with 3 hidden layer, 15t layer has 5 hidden 0.960, 0.967 0.9635 (8,8,8) > conv (é,z,le)) I soolingg e 0071 0:92%

units, 2" layer has 10 hidden units, 3 layer (4,4,16)]. One fully connected layer. 100

has 5 hidden units. learning rate decay a = epochs, batch size = 64.

0.1 — a = 0.001. He initialization.
Figure 6: Table of key experiments and results (standard NN on the left, CNN on the right)

Few important things we noticed during experimentation is that both two models are sensitive to
learning rate and batch size. That is because of the cost of our models tend to reach stagnation at first
few iterations, need to make sure the learning step is not too small otherwise the cost will stay at
the local minimum and learn nothing. Another thing we noticed is that the training and testing set
always have similar fg score no matter how we modify the model architecture. This is the reason why
we do not add regularization term, since the model is hardly to become overfitting. The details
about parameters in our final model archtecture is shown in the last row in Figurd6] We achieved
96.7% and 97.1% fy:+, score for both models we designed.

The qualitatively results of our final design is shown in Figurd7] The predicted result from NN is
shown on the left hand side, and it matches quite well with humanly labeled result which is shown
on the right hand side. Red points are jammed points and green points are non-jammed/regular points.
The overall impact area of the jammer is indicated by the crowd of red jammed points.

NN predicted y,.., Al points 30 plot colored wrt NIC_

g
3
2
8

30 31 32 3} W 3
Longitude

30 32 34 36 38 40
Longitude Longitude

Figure 7: 3D plot (top view) of all ADS-B data in testing set

Another interesting result we noticed is that most of the false positives and false negatives from both
models, shown in Figurdg] are also points which we were not sure whether or not they were jammed.
We struggled a lot during labeling those data points. For instance, we commonly use NIC = 7 as
a threshold, for points with NIC < 7, we believe the accuracy level is low and the point should be
affected. However, 7 is not a clear cut, it could not indicate for sure that NIC = 6 means point has

been jammed and NIC = 8 means the point is good. Noticed on the left hand side of Figurd8] all
points have NIC = 6 and all of them are far away from the possible impact area of the jammer. This
means we do not even know whether saying those points were not been jammed is a false statement.
Similar to the false negative flight shown on the right hand side.

Predicted Label
) 0 1

0 N FP

Predicted Label
0 1

0 TN FP

133908 2200 759 47

Actual
Label FN TP FN TP
9580 124270 6 833

1

B

3 2 S
20 3 3 % 33 M 3B B

Longitude

Figure 8: Sampled false negatives from both models

6 Conclusion/Future Work

In this project, we designed standard NN and ConvNets to take airplane’s position reports as inputs
and output a classification of whether these airplane has been jammed. We achieved 96.7% and
97.1% fperq score for both models we designed.

In the future, we would hope to perform more experiments on current models by performing further
analysis on false positives and false negatives. In addition, we would hope to design a DL. model
to be able to output highest possible location of the jammer. This requires obtaining dataset from
interference event that contains information about specific location of the jammer. This requirement
is difficult to achieve since all GPS interference testing events hardly provide information about the
interference source. But once obtained the data, what we have already trained could still be helpful,
we could apply transfer learning to building new DL models for this topic.

References

[1] P. Lukes, T. Topkova, T. Vi¢ek and S. Pleninger, "Recognition of GNSS Jamming Patterns in
ADS-B Data," 2020 New Trends in Civil Aviation (NTCA), Prague, Czech Republic, 2020, pp.
9-15, doi: 10.23919/NTCA50409.2020.9291039

[2] Darabseh, A., Bitsikas, E., and Tedongmo, B., “Detecting GNSS Jamming Incidents in OpenSky
Data,”. EPiC Series in Computing, Volume 67, 2019, Pages 97-108.

[3] Jonds, P, and Vitan, V., "Detection and Localization of GNSS Radio Interference using ADS-B
Data,". 2019 International Conference on Military Technologies (ICMT), Brno, Czech Republic,
2019, pp. 1-5, doi: 10.1109/MILTECHS.2019.8870034.

[4] Schifer, M., Strohmeier, M., Lenders, V., Martinovic, 1., and Wilhelm, M., "Bringing up OpenSKky:
A large-scale ADS-B sensor network for research". In Proceedings of the 13th International
Symposium on Information Processing in Sensor Networks, Berlin, Germany, 15-17 April 2014.

[5] Doc. No. FAA-2007-29305, 75 FR 30194, May 28, 2010; Amdt. 91-314-A, 75 FR 37712, June
30, 2010; Amdt. 91-316, 75 FR 37712, June 30, 2010

[6] Syd, Busyairah., Schuster, W., Ochieng, W., and Majumdar, A., "Analysis of anomalies in ADS-B
and its GPS data". GPS Solutions (2015). 20. 10.1007/s10291-015-0453-5.

	Introduction
	Related work
	Dataset and Features
	Data Preprocessing
	Data representation for CNN

	 Methods
	Standard Neural Network
	ConvNet

	Experiments/Results/Discussion
	Conclusion/Future Work

