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Abstract 
        In this project we developed a conditional deep neural network for face age progression generation. We surveyed 
the many datasets to select both diverse and domain specific training data for our intended class. We tuned hyper-
parameters and loss function to achieve stability and photorealism. We evaluated our results using a suite of both 
qualitative and quantitative metrics. Our final results were considered convincing in age progression according to our 
surveys. 

 

1. Introduction 
In our project, we will explore and implement face progression over different ages. People are often interested to know what they look 
like a few years or decades down the road. We would like to see how generative modeling can help predict what a face will look like in 
10, 20 years given a base face image at a younger age (pre-teen or early teens). One significant use case is fighting human trafficking 
and reuniting families. This is a traumatic experience for families and leaves many without closure. Because the human face goes through 
marked physical transformation from childhood through adulthood, it’s hard to recognize a lost child 10/15 years after abduction. Having 
a way to model future face given a childhood picture is extremely instrumental to continued search and rescue effort. For our use case, 
we will only consider age progression rather than age regression. Using Generative Adversarial Networks, we seek to generate older 
versions of oneself while preserving the identity of the individual. We are able to build conditional deep convolutional neural networks 
that achieve convincing results. 

 
2. Related Work 
2.1 Face Morphing Prior to GAN 
Prior to GAN, two approaches are often used for implementing face age progression: prototype based or modelling based. Modelling 
based approach identifies key facial features (eyes, nose, jaw) and tracks temporal changes (wrinkles, muscle, color) in those features. 
This approach requires age labeled training data per individual over a long time period, which is difficult to find at scale. It’s also 
computationally expensive. Prototype based method creates an average face based on many images within an age group and uses this to 
style transfer faces from one age group to another. This causes age-progressed images to lose personal traits and could average out 
features like wrinkles. A third way uses recurrent neural network to transform face smoothly across ages by modelling intermediate 
transition states. It’s able to generate finer grain images, but still requires age labeled data for the same person over the years.  
2.2 Face Morphing and GAN 
Generative Adversarial Networks[12] involve a discriminator and generator competing with each other in a minmax game. The generator 
starts with a latent vector Z and generates an image which discriminator gives feedback on. DCGAN[7] showed that GAN can be 
successfully applied to generate indoor scenes and human faces. StyleGan[8] made significant extension to basic GAN network to 
progressively generate high resolution (1024 x 1024) images from lower resolution ones. GAN has been applied in face aging image 
generation as well, it has the advantage of allowing aging image generation without paired data of the same person. cGAN[9] introduced 
“Identity-Preserving” latent vector optimization approach to ensure resemblance of generate face w.r.t original face. Age 
Progression/Regression by Conditional Adversarial Autoencoder[10] introduced using autoencoder in the generator network and imposed 
2 discriminators on the encoder and generator to enforce better latent vector distribution and more realistic images. Pyramid GAN[11] 
introduced pyramidal adversarial discriminator at multiple scales, which simulates the aging effects in a finer manner. It also introduced 
a set of methods for evaluating image fidelity and aging accuracy.  

 
3 Dataset 
3.1 Data source & characteristics 
Our model requires a lot of age labelled images as our dataset for training. Some widely cited datasets IMDB-WIKI, UTK and 
CACD2000. IMDB-WIKI and CACD2000 datasets are both datasets of celebrities. UTK dataset has both celebrities and ordinary 
people. MORPH II is a mugshot dataset but isn’t free ($99). All of these datasets are diverse in terms of ethnicity. In addition, AFAD 



(scrapped from renren.com, an Asian social network) and AAFD also has predominantly Asian faces. They can be used to train/test our 
algorithm on a single demographic. All these datasets have been cropped and face aligned, some still needed more preprocessing. 

                                            
Figure 1. Distribution and demographics of various datasets that we used in this project. 

 
3.2 Dataset preprocessing 
Although the aforementioned datasets abundance of data from twenties to forties years old, we found data in our key interest age groups 
(pre-teen or early teen) quite lacking. This is probably due to privacy concerns. IMDB and CACD have very few images below 14 years 
old; AFAD, although rich in post 15-yr images lack images under. A big part of our data preprocessing has been to combine these 
datasets. We further cropped IMDB and AAFD datasets to match the face proportion of UTK and AFAD respectively. In addition, 
because the data size in younger age is limited, it’s more sensitive to noise. We manually removed abnormal looking data such as adult 
mislabeled as children, wrong face orientation, masked face etc. 
 
3.3 Dataset composition 
We grouped images into age buckets and selected 16-20 and 26-30 as the target age group. We chose 6-10 years old as the source age 
group. For the source age group, we selected 1600 from combined IMDB and UTK combined set, and 800 from AFAD/AAFD combined 
dataset. We used 6000 images for 16-20 age groups and 10000 images for 26-30 age groups. All the age groups are balanced in terms 
of gender. We did 80%, 20% training/validation split, but did not use train/validate/test split because in lecture it’s said that for generative 
models’ people can skip test set, and we think our generative model fit the bill. 

 
4. Methods 
4.1 Model Architecture 
In this project, we use a deep convolutional neural network to generate face aging patterns. Our architecture is shown below. Our model 
has a generator/discriminator component as well as identity preserving component. We used FaceNet pretrained on VGGFace2 dataset 
to extract facial features as encoding and compared encodings faces. Unlike pixel-wise comparison, which will force pixel to pixel 
similarity, encoding comparison allows some variation to exist in output image (natural due to age progression) while preserving more 
prominent features. We did not incorporate age encoding as input to generator or discriminator, but instead rely on training on images 
in specific age groups for the particular generator. This “Group GAN”[4] approach has been used in other literature as well. It’s simpler 
architecturally but fits our problem domain well because we are only interested in a few age groups. Our input is a young face encoding 
concatenated with some noise vector Z to stabilize training. This latent vector is applied several layers of deconvolution to generate a 
face, which is critiqued by the discriminator. At test time, we use our generator model to make inference based on test data and evaluate 
our results. 

 

 
 

 
 
Figure 2. On the left: overview of architecture of age-GAN model. On the right: dimensions of generator and discriminator networks. 



 
4.2 Loss Functions 
Our baseline loss function is the one introduced in class. This measures Kullback–Leibler (KL) divergence between data distributions. 
We would like the distribution of our generator network to approach that of real images to achieve photorealism, thus it’s necessary to 
minimize the divergences. In addition, we incorporated other loss functions into our network. WGAN paper introduced Wasserstein 
distance (i.e. Earth Mover’s distance) which seeks to make two distributions similar while moving the least amount of distance. 
Wasserstein loss is better than KL divergence because even when two distributions do not share overlaps, it still provides meaningful 
representation of distance between the distributions, allowing the network to learn. The key to Wasserstein distance is Lipschitz 
constraint, which ensures that function is smooth. Weight clipping is used as an approximation to achieve that constraint. In WGAN-
GP, gradient penalty penalty is used to enforce the Lipschitz constraint as well. Both WGAN and WGAN-GP[5] are shown to be able to 
facilitate GAN training and reduce mode collapse. The loss functions are listed below.  

AgeGan Loss 

 

AgeGan Loss + WGAN Loss 

 

AgeGan Loss + WGAN-GP Loss 

 

 

 
5. Experiment 
5.1 Artifacts Tuning and Resize Convolution 
In the early iterations of our training, we observed various “artifact” patterns or “checkerboard” effects on our generator result. These 
artifacts are a natural result of applying layers of deconvolution which resulted in the stacking of pixels on specific columns on the 
image.  

 
Figure 3. Illustration of hyper parameter tuning in order to alleviate the checkerboard effect. From left to right: without any artifact 
tuning, tuning with stride and kernel size, using resize convolution architecture instead of deconvolution.  
 
Although these artifacts do not affect the training loss, they do affect the visual inspection from human eyes and will generate 
unnatural results. Our first approach is to re-tune the kernel and stride sizes of our deconvolution layers. “Checkerboard” effect tends 
to happen when you have kernel size that’s not divisible by the stride size, hence we tried various divisible pairs such as (5, 1), (4, 2), 
(6, 2) and etc. The result is better image quality with less artifacts.  
Other than tuning the kernel and stride size, we also explored with resize convolution layers for the generator instead of 
deconvolution. The resize convolution layer we tried includes two components: 1. Nearest neighbor interpolation for up sampling and 
2. Same size convolution to reduce the output channel while keeping the image dimensions. Resize convolution is naturally immune to 
the checkerboard effect as the layer does not project pixels in a congested area. We did observe the artifacts completely disappear in 
our experiment. However, we ended up not going with the resize convolution as it performed worse in terms of other generated image 
quality metrics. 
 
5.2 Mode Collapsing 
Mode collapsing is also another typical effect that has been observed through GAN training, in which the generator only produces a 
limited variety of samples. To counter this effect, we tried adding various dimensions of random pixels as an input to our generator. 
Adding too large of random noise size in generator training will make generator less stable and the generator training loss tends to 
increase drastically, while adding too few random noise sizes to the input will have less counter effect to mode collapsing. We found 



the (512, 128) split between FaceNet encoding and random noise size to be ideal for our GAN training process. In addition, WGAN 
and WGAN-GP also helped reduce mode collapse.  
 

 
Figure 4. A typical mode collapsing training batch. Many faces ended up being very similar from visual inspection. 

5.3 Learning Rate Decay and Encoding Loss Weight 
 

 
Figure 5. Using step decay learning rate in age GAN training. Both generator and discriminator loss eventually converge.  

 
 

                                              
Figure 6. On the left, no learning rate decay is applied, generator eventually diverges during training. On the right, using exponential 

learning rate for WGAN raining. Both generator and discriminator loss eventually converge.  
GAN training is an unstable process. From training age GAN and age GAN + WGAN we found that the generator can easily diverge 
after some amounts of epochs and pictures will “explode” eventually and never converge. We were able to solve this problem using 
learning rate decay algorithms and the GAN training process becomes more stable which can benefit higher epochs in training. 
Another issue is not knowing when to stop training, as loss function can gradually rise again beyond many epochs, we did early-
stopping by observing the trends in Tensorboard. 
 
6. Evaluation 
 
 

    
Figure 8. Left two: training results for two different age groups, 26-30, 16-20 respectively. Right: Training results from using a 

specific demographic dataset. 
 



  
Figure 9. Inference results for two different age groups, 26-30, 16-20 respectively. Using age group 1-5 pictures as input. 

 
We selected a suite of evaluation, both qualitative and quantitative to measure our results. Quantitative evaluation can be automated and 
done at scale and can be used to evaluate a large number of generated images quickly. Qualitative evaluation aligns better with real 
human perception and is the true north. 
For quantitative evaluation, we used FID score and age estimation[14]. Inception scores were deemed inappropriate as it evaluates class 
(bird, ship, TV) diversity of many classes, and is not suited for human face. FID score tells how real the generated images (of faces) are 
compared to real images (of faces). FID uses a deep network to extract facial features and compares ground truth image against target 
image is through some matrix operation. This core informs image quality, age estimator verifies quality of age effect generation, and 
gender estimator verifies basic identity information is preserved. There’s also a semi quantitative measure which is doing survey and 
getting mean opinion score. We created a survey of 8 questions that asks respondents two types of answer: 1. Does our model generate 
more realistic human face image than baseline model? 2. Does our model generate convincing progression given target age.  
We conducted a survey with 424 images and here is the mean result: 
 

 

 

Total Participants Total Images 
Surveyed 

Mean Opinion 
Score (scale 1 -5 ) 

53 424 3.73 
 

For FID score and age gender evaluation, we used online implementations with pretrained models. Perhaps because of the training set, 
age and gender estimation was not particularly accurate, and the model had almost random gender judgement and age had overestimation 
by 5 years for 26-30 age on ground truth data. For FID score, we compared 300 generated images from 6-10 source target group against 
1000 real images. We had an FID score of 340 for AgeGan model and 360 for WGAN model. Surprisingly AgeGan had better image 
quality. Because of the difference in training data, our FID score is very different from results in published literature. For sanity check, 
we calculated FID score on between real images and got ~60, and FID score between cat/dogs against human face and got 1000+. Our 
generated FID score is directionally correct. 
 
7. Conclusion 
We developed and evaluated multiple GAN models for generating face progression. We started out with Conditional Deep Convolutional 
GAN architecture and modified several loss/divergence functions to improve model stability and enhance image generation result. We 
modified model architecture to account for issues in GAN such as checkerboard artifacts, and fine-tuned hyperparameters such as 
learning rate, weight, hidden layer size, D vs G training time ratio. We researched and identified many datasets to power our training 
and used preprocessing to decrease noise. We adopted a suite of evaluation metrics to gauge the quality of our network and provide 
guidance for improvement. Ultimately, we were able to generate good quality age progressed images. Hopefully this technique will 
mature into a powerful tool to help find lost people and combat human trafficking 
 
8. Future work 
Improve evaluation. Better model to get high resolution images. Maybe gather higher quality labeled data through web scraping and 
video image extraction. 
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