Introduction

- tremendous application: photo-editing, computer-aided design
- fashion gans: rapidly visualize and modify ideas, or share their ideas with others

Difficulties

- It is very difficult to capture details in original text description
- It is very difficult to train GAN to generate high-resolution photo-realistic images from text descriptions.

Methods

The whole architecture is follow AttnGAN[5]

- attentional generative network: draw different sub-regions of the image by focusing on words that are more relevant to sub-region being drawn
- deep attentional multimodal similarity model (DAMSM): compute the similarity between the generated image and the sentence
 - text encoder: bi-directional LSTM that extracts semantic vectors from text description
 - image encoder: Convolutional Neural Network (CNN) that maps images into semantic vectors

Loss Function: \(L = L_c + \lambda_{\text{DAMSM}} \), where \(L_c = \sum L_{c_i} \)

Datasets

- The FashionGan Challenge
 - items: quantity
 - number of images: 325,536
 - resolution: 1360 x 1360
 - categories: 48
 - pose: multiple
 - number of items: 78,850

Results

DAMSM Training Results

AttentionGAN Training Results

More Results

Discussion

Summary

- implement a conditional-gan, generate realistic fashion photo's based on text description
- use attention generative model to build relations between specific word and image region
- two-stage refinement product: high-resolution outputs (256 x 256)

Discuss limitations or future work:

1. high-resolution image (1280 x 1280)
2. multi-modal learning to transfer image to captions

References