Abstract

IT support is a manually intensive task where support staff responds to a variety of user issues and request for information. Current production grade dialogue systems require of multiple components to work and are focused on slot filling of predesigned conversation flows. We propose an end-to-end dialogue using deep learning that could produce highly accurate responses and would be easier and cheaper to develop and maintain.

Data and Features

We used Ubuntu Dialog Corpus created from a collection of logs from Ubuntu-related chat rooms for technical support on the IRC network.

Dataset:
- # dialogues: 930,000
- # utterances: 7,100,000
- # words total: 100,000,000
- Min/avg # turns: 3/7.71
- Avg. # words: 10.34
- Vocab size: 91,000

Data Preprocessing: We process raw data into training data that contains context, response utterance and a flag label that indicates if the response was the actual next utterance for the given context. Validation and test set contain context, ground truth and multiple distractors.

Models

- Dual Encoder Architecture with Siamese Recurrent Networks.
- Context and Responses inputs to each branch of the network.
- Embeddings of the Context and Responses used to calculate probability of valid pair:

\[ p(\text{flag} = 1 | c, r, M) = \sigma(c^T M r + b) \]

- Loss Function:
  \[ \mathcal{L} = - \sum_{c} \log p(\text{flag}, c | n, M) + \frac{\lambda}{2} ||\theta||^2 \]

- Multi-Layer and Bidirectional LSTM Architectures:

- BERT - BERT: Pre-trained Deep Bidirectional Transformers

Results

<table>
<thead>
<tr>
<th>Network Type</th>
<th>State Size</th>
<th>Num Layers</th>
<th>Bidirectional</th>
<th>Pre-trained</th>
<th>Recall @1</th>
<th>Recall @2</th>
<th>Recall @3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>256</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>0.526</td>
<td>0.708</td>
<td>0.923</td>
</tr>
<tr>
<td>LSTM</td>
<td>256</td>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>0.519</td>
<td>0.708</td>
<td>0.919</td>
</tr>
<tr>
<td>LSTM</td>
<td>768</td>
<td>1</td>
<td>No</td>
<td>Yes</td>
<td>0.499</td>
<td>0.683</td>
<td>0.914</td>
</tr>
<tr>
<td>LSTM-Multi</td>
<td>128</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
<td>0.494</td>
<td>0.689</td>
<td>0.911</td>
</tr>
<tr>
<td>LSTM-Multi</td>
<td>128</td>
<td>3</td>
<td>No</td>
<td>Yes</td>
<td>0.483</td>
<td>0.675</td>
<td>0.911</td>
</tr>
<tr>
<td>LSTM-BiDi</td>
<td>128</td>
<td>1</td>
<td>Yes</td>
<td>Yes</td>
<td>0.512</td>
<td>0.696</td>
<td>0.915</td>
</tr>
<tr>
<td>LSTM-BiDi</td>
<td>128</td>
<td>1</td>
<td>Yes</td>
<td>No</td>
<td>0.537</td>
<td>0.712</td>
<td>0.920</td>
</tr>
<tr>
<td>BERT</td>
<td>768</td>
<td>12</td>
<td>Yes</td>
<td>Yes</td>
<td>0.551</td>
<td>0.738</td>
<td>0.927</td>
</tr>
</tbody>
</table>

Discussion and Future Work

Observations
- LSTM substantially help improve performance over baseline TF-IDF results (R@1 41%, R@5 71%)
- Bidirectional LSTM helps improve accuracy more than increasing state size or increasing number of layers
- Pretrained embeddings did not help in increasing accuracy
- Increasing state size beyond a limit can results in decrease of accuracy. State size 256 yields best results

Future Work
- Fine-tune pre-trained network (BERT, ELMo) with UDC corpus to improve accuracy
- Use knowledge graph and additional context information

Acknowledgements
- Mentor – Pedro Garzon, CS230 staff

References
- Benouk, et al. Learning end-to-end goal-oriented dialog
- Lowe, et al. Training end-to-end ubuntu dialogue corpus
- Devs, et al. BERT: Pre-training of Deep-Bid Transformers