HairNet as an input

We revisit the use of 1D convolutional networks for auditory tasks using raw audio waveforms, and we attempt to boost their performance using techniques and architectures that we design with inspiration from some of the latest convolutional neural network research.

We design a new, inception-style front-end component (HairNet) that parses raw audio using different filters. We also design an entirely distinct, DenseNet-style architecture (1DenseNet) that is intended to replace the standard 1D convolutional architecture. These designs are compared to a control benchmark CNN.

Both of these designs are intended to improve our capability to learn features from raw audio.

Data Set - Presidential Speech

Dataset = Recorded speeches from the last 5 Presidents. ~ 3 hours of audio per President. Audio = 10 sec. clips | 16 bit mono 22050 Hz WAV

Experimental Setup

- **w/o HairNet**
- **HairNet**
- **ConvNet**
- **DenseNet**
- **ConvNet w/ HairNet**
- **DenseNet w/ HairNet**

Trained for 10 epochs with 16 minibatch size.
Learning rate = 0.001
Use AdamOptimization

Results

2D ConvNets outperform 1D Nets, but 1D Nets do not require data preprocessing.

1D DenseNet did worse than ConvNet but is not as deep and has far fewer parameters. Can increase channels and layers to match size.

HairNet may be artificially limiting the scope of possible learned features by setting a certain filter size. Standard conv filter may learn more sophisticated features in the front end.

References

- [DenseNet](https://github.com/CS230-Petin1/CS230-Petin1)
- [ConvNet](https://github.com/CS230-Petin1/CS230-Petin1)
- [DenseNet w/ HairNet](https://github.com/CS230-Petin1/CS230-Petin1)
- [2D ConvNet](https://github.com/CS230-Petin1/CS230-Petin1)