Motivation

Natural language generation is increasingly important in today’s world of digital assistants. It is, however, difficult to have these systems produce language that makes sense. Traditional approaches like n-grams suffer from repeating corpus text and RNNs suffer from poor scaling as the vocabulary increases.

We therefore present a method that we call LightGAN. A GAN trained with a novel LSTM design originally from Stanford can address large vocabularies with minimal space requirements.

Data

- 467 Million tweets from 2009 from the SNAP group [1]
- Example raw data:

 7 2009-06-30 23:59:51

 H http://twitter.com/eboe

Preprocessing

- Remove timestamps and user information
- Remove non-english language tweets
- Replace websites, emojis, and @s with special tokens
- Pad the lines to the max length and remove words that appear less than 5 times.
- All preprocessing done beforehand to ensure that is not the bound
- Reduced vocabulary size to 100,000
- Example processed data:

 Out for karaoke and shots. Text if you dare. <url> <now> <now> ... <now>

Method: LightRNN [2]

Savings:

- Table allows us to perform two softmaxes to cell(sqrt(V)) instead of one to V
- Space savings of O(sqrt(V))

Drawback:

- Increased model complexity as operations are executed twice

Word Allocation

- Initially random
- Reallocate the words by solving a min cost max flow problem
- Have costs be proportional to the perplexity the model achieves on that word

Results

Training was implemented using ‘Curriculum Training’, where the GAN is trained on increasingly large sequences [3]. Testing was accomplished using Beam Search with a beam width of 100.

RT <AT_TAG> what u do RT <AT_TAG> go! lost food <AT_TAG> continually croasty <AT_TAG> be over sleeping my school

Discussion

- Size of the dataset causes computability problems
- Attention and dropout in the generator greatly improved the stability of the model
- Model still has problems with longer sequences

Future Work

- Compare these results to those produced by a gan using traditional LSTM
- Train on different vocabulary sizes to see if the scaling affects accuracy
- Improve stability by working with different schedules for D and G

References

Method: The WGAN-GP Language Model

The Language Model:

- Frame as supervised learning problem: predict the next word
- Use RNNs for sequence prediction
- Pretrain the embeddings and word allocation table

The WGAN [4]:

- Minimize the distance between the real and fake distributions
- Improves the stability of traditional GAN
- Use same architecture for generator and discriminator

The GP [4]:

- An improved form of gradient clipping for GANs
- Penalize the gradients for being far from unit length