

Setting up your ML application

Train/dev/test sets

Applied ML is a highly iterative process

Train/dev/test sets

Mismatched train/test distribution

Je Je Training set: Dev/test sets: Cat pictures from 7 Cat pictures from users using your app webpages > Make sure des al test come from some distibution. I I trach / tesk trach / dev The Third / dev

Not having a test set might be okay. (Only dev set.)

Setting up your ML application

Bias/Variance

Bias and Variance

High bias and high variance

Setting up your ML application

Basic "recipe" for machine learning

Basic recipe for machine learning

bias nertvork (training data partoinure) > Jown (NN archiotection Search) High vorane?. (des set préornale) 10~ 7 Kee white tota (NN architection search) traleofr Variane)

Regularizing your neural network

Regularization

Logistic regression

deeplearning.ai

Regularizing your neural network

Why regularization reduces overfitting

How does regularization prevent overfitting? $J(\omega^{\tau,0}, \delta^{\tau,0}) \sim \frac{1}{m} \sum_{i=1}^{m} I(y^{(i)}, y^{(i)}) + \frac{(a)}{2m} \sum_{k=1}^{L} \frac{||\omega^{\tau,0}||^2}{||\omega^{r,0}||^2}$ x_2 0 % "/. I Х "just right" high variance high bias Andrew Ng

How does regularization prevent overfitting?

Regularizing your neural network

Dropout regularization

Dropout regularization

Implementing dropout ("Inverted dropout")
Illubre with law
$$l=3$$
. Leep-pabe 0.8 0.2
 $\Rightarrow [J3] = np. radom. rand(a3. shape To], a3. shape Ti]) < keep-prob
 $a3 = np. multiply (a1, d3)$ # a3 * = d3.
 $\Rightarrow [a3] /= 0.8$ Keep-prob
 $T = 0.0$ units. 10 units shut off
 $2^{T43} = 10^{T43} \cdot 10^{T43}$ (est
 $f = 0.8$$

Making predictions at test time

(= X

No drop out. $1 z^{\tau_{12}} = W^{\tau_{12}} a^{\tau_{12}} t b^{\tau_{12}}$ $a^{\tau_{12}} = g^{\tau_{12}} (z^{\tau_{12}})$ $z^{\tau_{12}} = g^{\tau_{12}} (z^{\tau_{12}})$ $z^{\tau_{12}} = W^{\tau_{12}} a^{\tau_{12}} t b^{\tau_{12}}$ $a^{\tau_{12}} = W^{\tau_{12}} a^{\tau_{12}} t b^{\tau_{12}}$ $a^{\tau_{12}} = W^{\tau_{12}} a^{\tau_{12}} t b^{\tau_{12}}$

/= keep-prob

Regularizing your neural network

Understanding dropout

Why does drop-out work?

deeplearning.ai

Regularizing your neural network

Other regularization methods

Data augmentation

Setting up your optimization problem

Normalizing inputs

Normalizing training sets

Subtrat mean:

$$M = \frac{1}{m} \stackrel{e}{\underset{i=1}{\overset{e}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\overset{i}{\underset{i=1}{\overset{i}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\overset{i}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\atop{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atop{i=1}{\atop{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\atop{i=1}{\atop{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atop{i=1}{\atop{i=1}{\atop{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\atopi=1}{\atopi=1}{\atopi=1}{\atopi=1$$

Setting up your optimization problem

Vanishing/exploding gradients

Setting up your optimization problem

Numerical approximation of gradients

Checking your derivative computation

Setting up your optimization problem

Gradient Checking

Gradient check for a neural network

Take $W^{[1]}, b^{[1]}, \dots, W^{[L]}, b^{[L]}$ and reshape into a big vector θ .

Take $dW^{[1]}, db^{[1]}, ..., dW^{[L]}, db^{[L]}$ and reshape into a big vector $d\theta$. Concatente Is do the graft of J(0)?

Gradient checking (Grad check)
$$J(0) = J(0, 0, 0, 0)$$

for each i :
 $\Rightarrow \underline{JOopm}^{[i]} = \underline{J(0, 0, \dots, 0; + \varepsilon, \dots)} - J(0, 0, 0, \dots, 0; -\varepsilon, \dots)$
 2ε
 $\chi \underline{JO[i]} = \underline{2J}$
 $\chi \underline{JO[i]} = \underline{2J}$
 $\zeta \varepsilon$
 $\chi \underline{JO[i]} = \underline{2J}$
 $\zeta \varepsilon$
 ζ

Andrew Ng

Setting up your optimization problem

Gradient Checking implementation notes

Gradient checking implementation notes

- Don't use in training – only to debug

- If algorithm fails grad check, look at components to try to identify bug.
- Remember regularization.

$$I(\phi) = \frac{1}{m} \lesssim I(y^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \lesssim ||w^{(27)}||_{e}^{2}$$

$$d\theta = gruddt \quad df \quad I \quad wrt. \quad \Theta$$

- Doesn't work with dropout. 5 keep-pub = 1.0
- Run at random initialization; perhaps again after some training.