

Deep L-layer Neural network

Forward Propagation in a Deep Network

Getting your matrix dimensions right

Vectorized implementation

 $Z^{[L]}, \alpha^{[L]} : (\alpha^{[L]}, 1)$ $2^{\tau_1} = W^{\tau_1} \times + h^{\tau_1}$ $\begin{pmatrix} n^{\tau_{1}, \tau_{1}} \end{pmatrix} \begin{pmatrix} \tau_{1}, \tau_{1} \end{pmatrix} \begin{pmatrix} \tau_{1}, \tau_{1} \end{pmatrix} \begin{pmatrix} \tau_{1}, \tau_{1} \end{pmatrix} \begin{pmatrix} \tau_{1}, \tau_{1} \end{pmatrix}$ [2^{TU}] [2^{TU} \rightarrow Z^{tij} = W^{tij} X + b^{tij} $(n^{\Gamma_{1}}, m)$ $(n^{\Gamma_{1}}, n^{\Gamma_{1}})$ $(n^{\Gamma_{1}}, n^{\Gamma_{1}})$ $(n^{\Gamma_{1}}, m)$ $(n^{\Gamma_{1}}, m)$ \uparrow $(n^{\Gamma_{1}}, m)$ $(n^{\Gamma_{1}}, m)$ Andrew Ng

Why deep representations?

Intuition about deep representation

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Andrew Ng

Building blocks of deep neural networks

Forward, and backward functions

Forward and backward functions

Forward and backward propagation

Backward propagation for layer l

 \rightarrow Input $da^{[l]}$

 \rightarrow Output $da^{[l-1]}, dW^{[l]}, db^{[l]}$ dztes = daw * qtes (2 tes) dwill = dzter. ateris 26 = 27Th da = WILLT dztes dzTD = WTRUJ dz TRUJ + g (zTD)

dz m = LAm * gur'(Zu) dutes = 1 dztes ATR-13T db^{ter}= In np. sum (dZ^{Ter}, oxis=1, kopelus=True) dA^{TE-12}= W^{TERT} dZ^{TERT}

Summary

Parameters vs Hyperparameters

What are hyperparameters?

Andrew Ng

Applied deep learning is a very empirical process

Andrew Ng

What does this have to do with the brain?

Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

$$dZ^{[L]} = A^{[L]} - Y$$

$$dW^{[L]} = \frac{1}{m} dZ^{[L]} A^{[L]^{T}}$$

$$db^{[L]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[L]}, axis = 1, keepdims = True)$$

$$dZ^{[L-1]} = dW^{[L]^{T}} dZ^{[L]} g'^{[L]} (Z^{[L-1]})$$

$$\vdots$$

$$dZ^{[1]} = dW^{[L]^{T}} dZ^{[2]} g'^{[1]} (Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} A^{[1]^{T}}$$

$$db^{[1]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[1]}, axis = 1, keepdims = True)$$

