CS230: Lecture 10
Class wrap-up
Andrew Ng, Kian Katanforoosh
I. Project advice
II. What’s next?
III. Closing remarks
The final deliverables are:
  • A report (see http://cs230.stanford.edu/project/#final-report)
  • A poster (see http://cs230.stanford.edu/project/#poster)
  • A link to a 3-minute private video on YouTube presenting the problem statement, approach and results of your project

The report is due is 03/15 Sunday 11:59 PM (Pacific Time).
The poster and video are due on March 18, Wednesday 11:59 AM (Pacific Time).

Read our section post on “Writing your final report”:  http://cs230.stanford.edu/section/9/

See report and poster examples from past students here: http://cs230.stanford.edu/past-projects/
Here is a list of things we look for in your final report:

- Problem description
- Description of the dataset
- Hyperparameters tuning & Architecture search
- Paper writing
- Explanations of choices and decisions (architecture, loss, metrics, data)
- Data cleaning and preprocessing (if applicable)
- How much code you wrote on your own
- Insights and discussions (including next steps, and interpretation of results)
- Results: Accuracy (or other metric) satisfaction
- References
- Penalty for more than 5 pages (except References/contribution/theory-proofs)

To learn more, read our section post on “Writing your final report”:
http://cs230.stanford.edu(section/9)
I. Class project advice
II. What’s next?
III. Closing remarks
II. What’s next?

Classes at Stanford

Natural Language Processing

**CS 124**: From Languages to Information (LINGUIST 180, LINGUIST 280)
**CS 224N**: Natural Language Processing with Deep Learning (LINGUIST 284)
**CS 224U**: Natural Language Understanding (LINGUIST 188, LINGUIST 288)
**CS 276**: Information Retrieval and Web Search (LINGUIST 286)

Computer Vision

**CS 131**: Computer Vision: Foundations and Applications
**CS 205L**: Continuous Mathematical Methods with an Emphasis on Machine Learning
**CS 231N**: Convolutional Neural Networks for Visual Recognition
**CS 348K**: Visual Computing Systems

Others:

**CS 273B**: Deep Learning in Genomics and Biomedicine (BIODS 237, BIOMEDIN 273B, GENE 236)
**CS 236**: Deep Generative Models
**CS 228**: Probabilistic Graphical Models: Principles and Techniques
**CS 337**: AI-Assisted Care (MED 277)
**CS 229**: Machine Learning (STATS 229)
**CS 129**: Applied Machine Learning
**CS 234**: Reinforcement Learning
**CS 221**: Artificial Intelligence: Principles and Techniques
**CS 217**: Hardware Accelerators for Machine Learning

AI for Healthcare Bootcamp
AI for Climate Bootcamp
I. Class project advice
II. What’s next?
III. Closing remarks
1. **It is essential that the project’s *substance and form come together*. The work you produced during the quarter matters, but the way you present your work matters too.

2. The last mile is critical to deliver a *project you’re proud of*. Writing a good report, designing a nice poster, and creating a polished video are *high leverage tasks*, because you can share and refer back to them for the next years.

3. If you enjoyed working on your project, keep developing it after the class.