
Monophonic Pitch Tracking Using a Convolutional Neural
Network

Koye Alagbe

Computer Science Student
Stanford University

Abstract

Pitch tracking is the ability to identify the frequency of a sound signal in real time.
Being able to do this quickly and accurately has many uses across different areas
of both speech recognition and music processing. In music, each note is determined
by the frequency of its sound, so identifying frequencies digitally allows computer
programs to identify notes. This has many applications, such as in digital tuners and
in musical transcription.

People with chromesthesia map sounds, such as musical notes, to colors. For
example, an A on a piano might “sound” blue. These color mappings are
involuntary, consistent, and unique, meaning the same note always gets mapped to
the same color, and two people with chromesthesia would likely not have the same
color mappings. In this project, I attempt to use monophonic pitch tracking to build
an application that allows people to visualize the experience of having
chromesthesia. The color mappings used in the application were obtained from a
person with chromesthesia. The pitch tracking is handled by a convolutional neural
network that operates on fast Fourier transforms of sound data, trained using
examples from various instruments of all 88 musical notes on a piano.

1 Introduction

The word monophonic refers to sounds with
only one frequency being played at a time.
Monophonic pitch tracking is quite different
from polyphonic pitch tracking, or tracking
multiple pitches at once. Monophonic pitch
tracking plays more of a role in speech
recognition, in applications where one voice
is being tracked. In music, monophonic pitch
tracking is widely used in transcription or
melody extraction applications. The ability to
read a sound signal and identify the pitch has
many uses, and it is still being explored
today.

Chromesthesia is a rare condition, affecting
only about 1 in 3,000 people. For this project,

I worked with a subject with chromesthesia,
and I was told that for someone with it, seeing
colors is a regular part of the experience of
listening to music. The specific colors that
are seen seem arbitrary, and they differ from
person to person. For this project, I wanted to
create a way both for synesthetes to be able
to play a sound and see what they already see
in their minds shown back to them, and for
non-synesthetes to visualize what having
chromesthesia might be like.

To do this, I split the process of pitch tracking
into two parts: segmentation and
identification. A model that tracks pitches
needs to be able to both “know” when one
note ends and a new one is played, and be
able to identify that note. Since these are two

different problems, I address pitch
identification in this project, and I circumvent
the need for segmentation by treating every
sound signal as a series of small (64ms)
slices. I then treat every slice as a single note
and use the model to identify its pitch. In the
demo application accompanying this project,
these slices are taken in through the
microphone, and by using the model on the
audio slices one after another, I am able to
approximately track the pitch of the incoming
signal.

2 Related Work

The model in this project is in part based on
the CREPE pitch tracking model
(https://github.com/marl/crepe). CREPE
stands for convolutional representation for
pitch estimation, and it uses a convolutional
neural network that operates directly on
waveform audio data to produce its output.
The inputs to the CREPE model are 64ms
sound slices and the output of the model is a
one-hot encoded vector with 360 entries.
Each of the 360 entries corresponds to a
specific pitch, with possible pitches spanning
the six octaves from C1 to B6. The CREPE
model outputs pitches with 20-cent intervals
between notes. A cent is one hundredth of a
semitone, which is the interval between two
adjacent notes on a piano. Therefore, in the
output of the CREPE model, five output
nodes span a single semitone.

The model developed in this project differs
from the CREPE model in some significant
ways. Firstly, this model is trained with
examples covering all 88 notes on a piano,
from A0 to C8. This corresponds to the
frequencies 27.50 Hz and 4186.01 Hz. For
the sake of simplicity, this model also does
not include ouput classes at 20-cent intervals
between notes. Instead, it has just 89 output
classes, one for each of the 88 notes, and an
additional class for silence. The purpose of

this choice was to increase efficiency and
reduce overall model size and training time,
since I did not need that level of precision for
my intended application.

Secondly, this model does not operate
directly on sound data. Instead, it uses fast
Fourier transforms of the sound data. Fourier
transforms decompose time=series data into
its frequency-series data. This means that if
the original graph of the sound plots the
amplitude at different times, the Fourier
transform will plot amplitude at different
frequencies. The peaks of this graph occur at
the frequencies that are most prominent in the
original sound. Because this data provides
more information about the frequency of the
inputted sound than the raw sound data, using
a Fourier transform as input greatly reduced
training time and improved performance.

3 Dataset and Features

This project makes use of the NSynth dataset.
This dataset contains synthesized audio files
of 305,979 musical notes, spanning all 128
MIDI pitches and 1,006 unique instruments
across 11 instrument families, namely bass,
brass, flute, guitar, keyboard, mallet, organ,
reed, string, synth lead, and vocal. Each audio
file, stored as a waveform audio file (.wav),
lasts for 4 seconds at a sampling rate of 16
kHz. This means that each file contains
64,000 individual audio samples, stored as
floating-point numbers that represent
amplitude over time. The dataset is split into
training, cross validation, and test sets with
289,205, 12,678, and 4,096 samples
respectively, and each of these datasets
contains an accompanying JSON file that
lists information such as pitch, instrument
family, and qualities for each audio file.

Not every file from the NSynth dataset was
used for this project. Audio files were
selected such that roughly the same number

of training examples was chosen from each
pitch and from each of the 11 instrument
families. Preprocessing involved randomly
selecting audio files from the set and
obtaining random 1,024-sample slices from
them. Note that at a sampling rate of 16 kHz,
this is equivalent to 64ms of audio. After each
slice was selected, Fourier transforms were
applied to each one, cutting the input length
in half. The final length of each input
example was 512 values, representing the
Fourier transform of a 64ms sound slice.

4 Methods

The final model used for this project is a
convolutional network consisting of an input
layer with 512 neurons, a one-dimensional
convolutional layer with 256 filters, a kernel
size of 32, and a stride of 2, with the input to
this layer padded so that the output has the
same dimensions as the input. This layer uses
the ReLU activation function and is followed
by a one-dimensional max pooling layer with
a pool size of 2, also padding so that the input
and output match dimensions. The next
layers are two fully connected layers of 1,024
neurons each, both with ReLU activation.
Finally, the output layer consists of 89
neurons and uses the softmax activation
function. During training, each layer other
than the output was followed by a dropout
layer with a dropout rate of 0.15. The
optimizer used in training was the Adam
optimizer with learning rate decay and a
batch size of 50, optimizing the categorical
cross entropy loss function. Lastly, the input
to the model was normalized to be in the
range (-1, 1), and all of the weights were
initialized with He initialization.

Over the course of this project, this pitch
identification model went through many
iterations. At the start of the training process,
I did not apply Fourier transforms to the
sound data, so the raw waveform data was the

direct input to the network. My original idea
was that this might help the network “form its
own conclusions.” I did not want to lose too
much information right away.

At the start, the model was a fully connected
network with just two layers of 128 neurons
each. This model quickly ran into problems
with underfitting. I experimented with
increasing both the number of layers and the
number of units per layer, which slightly
decreased validation error. However, the
increase in performance was relatively small,
never breaking 50% validation accuracy,
especially considering the large increase in
training time caused by the increase in model
size.

From here, I switched to a convolutional
model, more similar to the CREPE model.
Once again, the model started out small, and
I added layers and neurons to try and combat
underfitting. In this stage, I first tried to make
the model overfit the training set, which it
was eventually able to do. I then introduced
regularization in the form of dropout to the
model to try and improve performance on the
validation set. The recurring problem was
that the validation performance would
eventually stop improving during training.
When that happened, I tried to add layers and
neurons to increase the learning capacity of
the network. I experimented with adding
convolutional layers, fully connected layers,
or both to see what yielded the best
performance. When I started to notice
overfitting again, I also experimented with
both L1 and L2 regularization with different
regularization parameters, and with changing
the batch size. None of this seemed to make
a significant difference to validation
performance, I eventually kept the batch size
at 50 and removed the L1 and L2
regularizaiton. At a certain time, I was using
a convolutional model with six convolutional
layers (each followed by a max pooling layer)

and two fully connected layers, and achieving
about 75% validation accuracy. At this point,
training was very slow, and I noticed that the
further addition and removal of layers did not
improve validation performance. I began to
investigate the input to the model.

The use of Fourier transforms on the data
made a significant difference. With a much
smaller convolutional model than the one
without Fourier transformed inputs, I was
able to achieve the same validation
performance in only a fraction of the training
time. Once again, after a process of adding
and removing layers and neurons, as well as
changing dropout rates, I was able to achieve
the final model for this project, which was
able to get an accuracy of about 80% on the
validation set.

5 Results

The final model achieves a loss of 0.83 and
an accuracy of 81.42% on the test set. A
confusion matrix of the final result shows that
the model frequently misclassifies notes at
the highest and lowest ends of the input
range. One reason for this could be that very
high notes do not resonate as much as lower
notes, and low notes resonate too much.
Musical notes consist of a fundamental
frequency and other frequencies that are
integer multiples of that fundamental
frequency playing simultaneously. When a
note resonates very much, it is more likely for
these other frequencies to be heard. This is
why I believe lower notes can be harder to
classify. This belief is corroborated by the
subject with chromesthesia who helped me
with this project, who also has perfect pitch.
They said that the lowest notes on the piano
are harder to classify, and it is harder to
decide what color they see most clearly when
these notes are played. This is one difference
between the model in this project and the
CREPE model, since the latter only uses

input notes between C1 and B6, which I
believe after seeing the results would
improve the performance of the model.

With the final model, I was able to build the
demo application to accompany this project.
This application takes in input from the
microphone and tracks the incoming signal in
real time. It uses the pitch identification
model to determine the pitch coming in and
update the color of a circle every 64ms
according to the specific color mappings of
the subject I worked with. When I showed the
demo to them, they became visibly excited,
saying things like “This is exactly what I see
in my head!” The subject could play, hum, or
sing notes into the microphone and watch the
color of the circle change accordingly. I
consider this outcome a successful one,
because one of the goals of this project was
to provide an interesting way for people with
chromesthesia to experience music.
However, improvements can still be made to
the model to improve its accuracy.

6 Conclusion

At the start of this project, the goal was to
build a pitch identification model that could
be used to track the pitch of a sound in real
time and display colors according to the color
mappings of a person with chromesthesia.
The demo application was able to do that to a
significant degree. One way to improve the
accuracy could be to limit the input range to
a set of notes more common in the real world
since the notes at the lowest and highest ends
of the range are harder to classify. One
further application of this pitch identification
model could be in an instrument tuner
application that, similar to the demo
application, would track the pitch of audio
coming in through the microphone. This
application would most likely require more
precise output than simply the note, so the
model could be changed to include pitches at

20-cent or 10-cent intervals between
semitones, like the CREPE model.
Monophonic pitch tracking has many more
applications beyond chromesthesia and
instrument tuning, and a model like this one
can definitely be improved on and put to
many different uses.

7 Contributions

I would like to give a very special thanks to
my sister, Lota Alagbe, who has both perfect
pitch and chromesthesia and agreed to help
me with this project. She provided me with
her color mappings for all 88 notes on the
piano, and she gave me a lot of information
on her experience with chromesthesia.

8 References

[1] Jong Wook Kim, Justin Salamon, Peter
Li, and Juan Pablo Bello. “CREPE: A
Convolutional Representation for Pitch
Estimation.” In 2018 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018.
The original paper on the CREPE model. A
GitHub repository with a published version

of the model can be found at
https://github.com/marl/crepe.

[2] Jesse Engel, Cinjon Resnick, Adam
Roberts, Sander Dieleman, Douglas Eck,
 Karen Simonyan, and Mohammad Norouzi.
"Neural Audio Synthesis of Musical Notes
 with WaveNet Autoencoders." 2017.

The paper where the NSynth dataset was
introduced.

[3] Palmer, Stephen E. “What Color is this
Song?” Nautilus. 16 Jul 2015, <
https://nautil.us/issue/26/color/what-color-
is-this-
song#:~:text=Such%20individuals%20have
%20a%20neurological,hearing%20music%2
0and%20other%20sounds.&text=Chromesth

esia%20is%20relatively%20rare%2C%20oc
curring,about%201%20in%203%2C000%20
individuals>. Accessed 16 Mar 2021.
[4] Libraries and frameworks: Tensorflow
(https://www.tensorflow.org/), Keras
(https://keras.io/).

