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Abstract 

 
Pitch tracking is the ability to identify the frequency of a sound signal in real time. 
Being able to do this quickly and accurately has many uses across different areas 
of both speech recognition and music processing. In music, each note is determined 
by the frequency of its sound, so identifying frequencies digitally allows computer 
programs to identify notes. This has many applications, such as in digital tuners and 
in musical transcription.  
 
People with chromesthesia map sounds, such as musical notes, to colors. For 
example, an A on a piano might “sound” blue. These color mappings are 
involuntary, consistent, and unique, meaning the same note always gets mapped to 
the same color, and two people with chromesthesia would likely not have the same 
color mappings. In this project, I attempt to use monophonic pitch tracking to build 
an application that allows people to visualize the experience of having 
chromesthesia. The color mappings used in the application were obtained from a 
person with chromesthesia. The pitch tracking is handled by a convolutional neural 
network that operates on fast Fourier transforms of sound data, trained using 
examples from various instruments of all 88 musical notes on a piano.  

 
1 Introduction 
 
The word monophonic refers to sounds with 
only one frequency being played at a time. 
Monophonic pitch tracking is quite different 
from polyphonic pitch tracking, or tracking 
multiple pitches at once. Monophonic pitch 
tracking plays more of a role in speech 
recognition, in applications where one voice 
is being tracked. In music, monophonic pitch 
tracking is widely used in transcription or 
melody extraction applications. The ability to 
read a sound signal and identify the pitch has 
many uses, and it is still being explored 
today. 
 
Chromesthesia is a rare condition, affecting 
only about 1 in 3,000 people. For this project, 

I worked with a subject with chromesthesia, 
and I was told that for someone with it, seeing 
colors is a regular part of the experience of 
listening to music. The specific colors that 
are seen seem arbitrary, and they differ from 
person to person. For this project, I wanted to 
create a way both for synesthetes to be able 
to play a sound and see what they already see 
in their minds shown back to them, and for 
non-synesthetes to visualize what having 
chromesthesia might be like. 
 
To do this, I split the process of pitch tracking 
into two parts: segmentation and 
identification.  A model that tracks pitches 
needs to be able to both “know” when one 
note ends and a new one is played, and be 
able to identify that note. Since these are two 



different problems, I address pitch 
identification in this project, and I circumvent 
the need for segmentation by treating every 
sound signal as a series of small (64ms) 
slices. I then treat every slice as a single note 
and use the model to identify its pitch. In the 
demo application accompanying this project, 
these slices are taken in through the 
microphone, and by using the model on the 
audio slices one after another, I am able to 
approximately track the pitch of the incoming 
signal. 
 
2 Related Work 
 
The model in this project is in part based on 
the CREPE pitch tracking model 
(https://github.com/marl/crepe). CREPE 
stands for convolutional representation for 
pitch estimation, and it uses a convolutional 
neural network that operates directly on 
waveform audio data to produce its output. 
The inputs to the CREPE model are 64ms 
sound slices and the output of the model is a 
one-hot encoded vector with 360 entries. 
Each of the 360 entries corresponds to a 
specific pitch, with possible pitches spanning 
the six octaves from C1 to B6. The CREPE 
model outputs pitches with 20-cent intervals 
between notes.  A cent is one hundredth of a 
semitone, which is the interval between two 
adjacent notes on a piano. Therefore, in the 
output of the CREPE model, five output 
nodes span a single semitone. 
 
The model developed in this project differs 
from the CREPE model in some significant 
ways. Firstly, this model is trained with 
examples covering all 88 notes on a piano, 
from A0 to C8. This corresponds to the 
frequencies 27.50 Hz and 4186.01 Hz. For 
the sake of simplicity, this model also does 
not include ouput classes at 20-cent intervals 
between notes. Instead, it has just 89 output 
classes, one for each of the 88 notes, and an 
additional class for silence. The purpose of 

this choice was to increase efficiency and 
reduce overall model size and training time, 
since I did not need that level of precision for 
my intended application. 
 
Secondly, this model does not operate 
directly on sound data. Instead, it uses fast 
Fourier transforms of the sound data. Fourier 
transforms decompose time=series data into 
its frequency-series data. This means that if 
the original graph of the sound plots the 
amplitude at different times, the Fourier 
transform will plot amplitude at different 
frequencies. The peaks of this graph occur at 
the frequencies that are most prominent in the 
original sound. Because this data provides 
more information about the frequency of the 
inputted sound than the raw sound data, using 
a Fourier transform as input greatly reduced 
training time and improved performance. 
 
3 Dataset and Features 
 
This project makes use of the NSynth dataset. 
This dataset contains synthesized audio files 
of 305,979 musical notes, spanning all 128 
MIDI pitches and 1,006 unique instruments 
across 11 instrument families, namely bass, 
brass, flute, guitar, keyboard, mallet, organ, 
reed, string, synth lead, and vocal. Each audio 
file, stored as a waveform audio file (.wav), 
lasts for 4 seconds at a sampling rate of 16 
kHz. This means that each file contains 
64,000 individual audio samples, stored as 
floating-point numbers that represent 
amplitude over time. The dataset is split into 
training, cross validation, and test sets with 
289,205, 12,678, and 4,096 samples 
respectively, and each of these datasets 
contains an accompanying JSON file that 
lists information such as pitch, instrument 
family, and qualities for each audio file. 
 
Not every file from the NSynth dataset was 
used for this project. Audio files were 
selected such that roughly the same number 



of training examples was chosen from each 
pitch and from each of the 11 instrument 
families. Preprocessing involved randomly 
selecting audio files from the set and 
obtaining random 1,024-sample slices from 
them. Note that at a sampling rate of 16 kHz, 
this is equivalent to 64ms of audio. After each 
slice was selected, Fourier transforms were 
applied to each one, cutting the input length 
in half. The final length of each input 
example was 512 values, representing the 
Fourier transform of a 64ms sound slice. 
 
4 Methods 
 
The final model used for this project is a 
convolutional network consisting of an input 
layer with 512 neurons, a one-dimensional 
convolutional layer with 256 filters, a kernel 
size of 32, and a stride of 2, with the input to 
this layer padded so that the output has the 
same dimensions as the input. This layer uses 
the ReLU activation function and is followed 
by a one-dimensional max pooling layer with 
a pool size of 2, also padding so that the input 
and output match dimensions. The next 
layers are two fully connected layers of 1,024 
neurons each, both with ReLU activation. 
Finally, the output layer consists of 89 
neurons and uses the softmax activation 
function. During training, each layer other 
than the output was followed by a dropout 
layer with a dropout rate of 0.15. The 
optimizer used in training was the Adam 
optimizer with learning rate decay and a 
batch size of 50, optimizing the categorical 
cross entropy loss function. Lastly, the input 
to the model was normalized to be in the 
range (-1, 1), and all of the weights were 
initialized with He initialization. 
 
Over the course of this project, this pitch 
identification model went through many 
iterations. At the start of the training process, 
I did not apply Fourier transforms to the 
sound data, so the raw waveform data was the 

direct input to the network. My original idea 
was that this might help the network “form its 
own conclusions.” I did not want to lose too 
much information right away. 
 
At the start, the model was a fully connected 
network with just two layers of 128 neurons 
each. This model quickly ran into problems 
with underfitting. I experimented with 
increasing both the number of layers and the 
number of units per layer, which slightly 
decreased validation error. However, the 
increase in performance was relatively small, 
never breaking 50% validation accuracy, 
especially considering the large increase in 
training time caused by the increase in model 
size. 
 
From here, I switched to a convolutional 
model, more similar to the CREPE model. 
Once again, the model started out small, and 
I added layers and neurons to try and combat 
underfitting. In this stage, I first tried to make 
the model overfit the training set, which it 
was eventually able to do. I then introduced 
regularization in the form of dropout to the 
model to try and improve performance on the 
validation set. The recurring problem was 
that the validation performance would 
eventually stop improving during training. 
When that happened, I tried to add layers and 
neurons to increase the learning capacity of 
the network. I experimented with adding 
convolutional layers, fully connected layers, 
or both to see what yielded the best 
performance. When I started to notice 
overfitting again, I also experimented with 
both L1 and L2 regularization with different 
regularization parameters, and with changing 
the batch size. None of this seemed to make 
a significant difference to validation 
performance, I eventually kept the batch size 
at 50 and removed the L1 and L2 
regularizaiton. At a certain time, I was using 
a convolutional model with six convolutional 
layers (each followed by a max pooling layer) 



and two fully connected layers, and achieving 
about 75% validation accuracy. At this point, 
training was very slow, and I noticed that the 
further addition and removal of layers did not 
improve validation performance. I began to 
investigate the input to the model. 
 
The use of Fourier transforms on the data 
made a significant difference. With a much 
smaller convolutional model than the one 
without Fourier transformed inputs, I was 
able to achieve the same validation 
performance in only a fraction of the training 
time. Once again, after a process of adding 
and removing layers and neurons, as well as 
changing dropout rates, I was able to achieve 
the final model for this project, which was 
able to get an accuracy of about 80% on the 
validation set. 
   
5 Results 
 
The final model achieves a loss of 0.83 and 
an accuracy of 81.42% on the test set. A 
confusion matrix of the final result shows that 
the model frequently misclassifies notes at 
the highest and lowest ends of the input 
range. One reason for this could be that very 
high notes do not resonate as much as lower 
notes, and low notes resonate too much. 
Musical notes consist of a fundamental 
frequency and other frequencies that are 
integer multiples of that fundamental 
frequency playing simultaneously. When a 
note resonates very much, it is more likely for 
these other frequencies to be heard. This is 
why I believe lower notes can be harder to 
classify. This belief is corroborated by the 
subject with chromesthesia who helped me 
with this project, who also has perfect pitch. 
They said that the lowest notes on the piano 
are harder to classify, and it is harder to 
decide what color they see most clearly when 
these notes are played. This is one difference 
between the model in this project and the 
CREPE model, since the latter only uses 

input notes between C1 and B6, which I 
believe after seeing the results would 
improve the performance of the model. 
 
With the final model, I was able to build the 
demo application to accompany this project. 
This application takes in input from the 
microphone and tracks the incoming signal in 
real time. It uses the pitch identification 
model to determine the pitch coming in and 
update the color of a circle every 64ms 
according to the specific color mappings of 
the subject I worked with. When I showed the 
demo to them, they became visibly excited, 
saying things like “This is exactly what I see 
in my head!” The subject could play, hum, or 
sing notes into the microphone and watch the 
color of the circle change accordingly. I 
consider this outcome a successful one, 
because one of the goals of this project was 
to provide an interesting way for people with 
chromesthesia to experience music. 
However, improvements can still be made to 
the model to improve its accuracy. 
 
6 Conclusion 
 
At the start of this project, the goal was to 
build a pitch identification model that could 
be used to track the pitch of a sound in real 
time and display colors according to the color 
mappings of a person with chromesthesia. 
The demo application was able to do that to a 
significant degree. One way to improve the 
accuracy could be to limit the input range to 
a set of notes more common in the real world 
since the notes at the lowest and highest ends 
of the range are harder to classify. One 
further application of this pitch identification 
model could be in an instrument tuner 
application that, similar to the demo 
application, would track the pitch of audio 
coming in through the microphone. This 
application would most likely require more 
precise output than simply the note, so the 
model could be changed to include pitches at 



20-cent or 10-cent intervals between 
semitones, like the CREPE model. 
Monophonic pitch tracking has many more 
applications beyond chromesthesia and 
instrument tuning, and a model like this one 
can definitely be improved on and put to 
many different uses. 
 
7 Contributions 
 
I would like to give a very special thanks to 
my sister, Lota Alagbe, who has both perfect 
pitch and chromesthesia and agreed to help 
me with this project. She provided me with 
her color mappings for all 88 notes on the 
piano, and she gave me a lot of information 
on her experience with chromesthesia. 
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