
Chinese-to-English machine translation

Cynthia Hao
Department of Computer Science

Stanford University
chao16@stanford.edu

Zhuoer Gu
Department of Computer Science

Stanford University
guzhuoer@stanford.edu

Abstract

The ability to automatically translate different languages from images or hand-
written text has many applications in medicine, travel, education, international
commerce, text digitization, and many other areas. However, the different grammar
and lack of clear word boundaries in Chinese presents challenges when translating
to word-based languages such as English. In this work, we have implemented a
deep learning machine translation system to tackle these challenges. The deep
learning algorithm takes in Chinese text as input and uses a sequence-to-sequence
(seq2seq) encoder-decoder model with an attention mechanism based on Google’s
Neural Machine Translation (NMT) model to translate the text to English output
[8]. The model was trained using sparse categorical cross entropy loss and an Adam
optimizer on paired Chinese and English text sentences from the 2019 Conference
on Machine Translation, with 227,177 training pairs and 2,002 validation pairs [1].
In addition to tracking loss over training epochs, we measured the quality of our
model’s translations using the BLEU score for machine translation. We compared
the model’s performance to a smaller baseline model with no pre-trained embed-
dings, as well as several less complex models with different learning rates. Our
final model achieved a maximum BLEU score of 0.247. We can further improve
this score by tuning other hyperparameters and increasing the complexity of our
model, as well as by training on a larger subset of the data to avoid biased results.

1 Introduction

Machine translation systems have applications in fields ranging from travel to the study of ancient
literature. Translation applications are so important that Google, WeChat, Microsoft, and many other
companies have all implemented their own machine translation systems using various deep learning
methods. Mandarin Chinese is currently one of the most widely-used languages in the world, and
the ability to understand Chinese text can lead to cultural and commercial benefits for non-Chinese
speakers. The goal of our proposed system is to translate Chinese text into English text, one sentence
at a time, to make these benefits more accessible to English speakers. In our project, we intend to
build a smaller translation model based on models built by Google Translate.

2 Related work

The state of the art approach for machine translation is the system used by Google Translate. Google
previously used the Google neural machine translation (GNMT) system with an 8-layer LSTM
encoder and RNN decoder architecture with attention, which achieved very good performance [8].
However, it would be computationally expensive and slow to train, especially for a team without
Google’s resources. Google later changed their machine translation system to a transformer model

CS230: Deep Learning, Winter 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



with self-attention using the Tensor2Tensor library, which is faster to train and performs better, but is
a more complex model that is slightly harder to understand conceptually [5]. A team from Microsoft
has also applied dual learning models to the machine translation task with success [7]. There are
many existing datasets and tutorials utilizing Google’s original NMT architecture because it is so
well-known. We will be adapting one of these existing models for our purposes [6].

3 Dataset and Features

For our machine translation task, we used subsets of the Chinese to English news text dataset from
the 2019 Conference on Machine Translation (WMT), which is freely available on TensorFlow
as part of their larger wmt19_translate dataset [2]. This sentence-level dataset contains news in
both English and Chinese languages in TensorFlow text object format. The full dataset contains
25,986,436 training and 3,981 validation examples [2]. Because of limitations on computational
resources and to speed up training, we used subsets of the data. We further split the data into a
training set of 227,177 sentence pairs and a development set of 2,002 pairs. An example of the data is
shown in Figure 1.

To preprocess our data, we generated 2 separate files containing only the English sentences and only
the Chinese sentences in the same order. We were able to generate this vocabulary by tokenizing
each sentence in the training dataset and keeping only unique word or character tokens, and
then mapping these tokens to an index in the vocabulary. We tokenized the English sentences
on a word level. For our baseline model, we split the Chinese sentences by character, which
may have resulted in loss of some of the semantic meaning of the Chinese words, compared to
splitting into Chinese words or phrases. In our final model, we instead used the Stanford Chinese
Word Segmenter, which splits Chinese text into semantic groups rather than just by character [4].
After we generated these tokens, we wrote them into a separate vocabulary file with one token per line.

In our baseline model, we chose not to use an existing embedding technique such as word2vec. The
embeddings were passed directly into the rest of our model, as described in Methods. For our final
model, we used the FastText word vectors for 157 languages as embeddings for both the English and
the Chinese sentences [3]. Although the default embedding size is 300 units long, we reduced the
size of the embedding to 64 units per vector to conserve system memory. After we generated one
vector embedding for each token in our vocabulary files, we created embedding files with one token
and its corresponding vector embedding on each line that were fed into the rest of our model. More
details about the baseline model will be provided in the following Methods section.

Figure 1: Examples from the WMT 2019 dataset available from TensorFlow [2]. The left column is
each English sentence in the dataset, and the right column is its corresponding Chinese translation.
The datasets we used had either Chinese or English as the original "source" language and the other
as the "target" language, but we considered all of the Chinese sentences as "source" and their
corresponding English sentences as "target" for this task.

2



4 Methods

For our Chinese-to-English machine translation task, we designed a smaller version of the
encoder-decoder model used in Google’s GNMT system [5]. The model takes in an embedding of the
Chinese sentence, passes this embedding to a recurrent encoder, and then passes the encoded input to
another recurrent decoder that outputs logits. The output of the decoder is then fed into a scaled
Luong attention mechanism that adjusts the weights after every decoder time step before the logits
are converted into the translated English sentence. The original GNMT model includes 8 LSTM
layers for the encoder (7 uni-directional and 1 bi-directional), and 8 RNN decoder layers (Figure 2) [8].

We trained a model with no pre-trained embedding, 1 LSTM layer for the encoder and 1 LSTM
layer for the decoder as a baseline. This baseline model had 32 hidden units, a learning rate of 0.01,
no dropout, and a batch size of 128. We used sparse categorical cross entropy loss and an SGD
optimizer as Wu, et al did in [8]. We trained this baseline model on the same training set we used for
our later models.

To decide on working hyperparameters for our Chinese-to-English dataset, we performed a
hyperparameter search, training many different models for 15,000 epochs each with a batch size of
128. We tuned the learning rate between 0.01 and 1.0, the number of encoder and decoder layers
between 2 layers each and 4 layers each, and the number of hidden units between 32 and 1024 on
the WMT19 validation dataset. Because of resource constraints, we used smaller architectures with
fewer encoder and decoder layers and no residual layers, a relatively small batch size of 128, and
uni-directional instead of bi-directional layers. We used sparse categorical cross-entropy loss, a
dropout of 0.2 for each layer, an SGD optimizer, and all LSTM layers. The beam width we used
remained 10.

Although we performed this hyperparameter search, none of the models we initially tried converged.
To improve our results, we tried using a pre-trained embedding and using a word segmenter instead of
splitting by character that were menioned in Section 3. Once we started pre-processing our Chinese
text data with the word segmenter and used the pre-trained FastText embeddings, our model was able
to converge and our performance greatly improved. Our final model with pre-trained embeddings
relied on the IWSLT parameter set given by the NMT tutorial by Luong et al and was trained for
100,000 iterations [6]. This model had 512 hidden units, a dropout of 0.2, a batch size of 128, a beam
width of 10, bidirectional encoder type, 2 LSTM encoder and 2 LSTM decoder layers, and a learning
rate of 1.0.

To test different parameters with the embedding, we also performed a more restricted hyperparameter
search using learning rates of 0.01, 0.1, 0.5 and 2.0. All of these tests were performed using a model
with 1 layer each for encoder and decoder, 64-unit embeddings, 32 hidden units, and a batch size of
32. These models were trained for 50,000 iterations each. We expected to train a larger model on
more hidden units after achieving convergence of train loss on these smaller models. The difference
in performance for different learning rates can be seen in the Results section.

5 Experiments/Results/Discussion

We have adapted code from a Tensorflow tutorial using an existing LSTM with attention architecture
on NMT to perform Chinese-to-English translation. We have processed our subdataset of Chinese to
English news text data in the same format to feed into the model, and we have confirmed that we can
train models for at least 100,000 epochs on an AWS machine with 1 GPU, using a batch size of 32.

One common metric for evaluating translation quality is the bilingual evaluation understudy (BLEU)
score. This score works by comparing the output of the machine translation algorithm to a set of
professional human-translated sentences. Scores range from 0 to 1, where a score of 1 indicates exact
match to the ground truth translation. While few high-quality translations will achieve a score of
exactly 1, increased BLEU score is still indicative of translation quality. We will use the BLEU score
on test data as our primary metric, and we will also look at training loss over time to evaluate model fit.

3



Figure 2: The model architecture of a neural machine translation (NMT) system with encoder (blue)
and decoder (red) networks and an attention module (brown) [8]. This figure is from the TensorFlow
tutorial we are using [6].

All of the models we tried without using a pre-trained embedding were unable to converge, despite
using multiple hyperparameter sets with varying learning rates, batch sizes, number of hidden units,
and number of layers. The training loss curve of the baseline model that we trained without attention
is shown in Figure 3a as an example—— it was highly oscillatory and did not seem to decrease
significantly over time. The maximum BLEU score we obtained from all of these models was 0.0,
and the output sentence translations were fairly nonsensical (Figure 3b).

Figure 3: (a) Training loss curve for baseline model without a pre-trained embedding or Chinese word
segmentation. Loss is plotted on the y-axis and number of iterations on the x-axis. The training loss
does not converge and is highly oscillatory, indicating that the fit is not good for our task. (b) Output
sentence examples from the baseline model. These sentences are repetitive, low-quality translations
that use only a few tokens from the vocabulary. The maximum BLEU score for this model was 0.0.

We performed an experiment on the models with the pre-trained 64-unit embeddings by testing
learning rates of 0.01, 0.1, 0.5, and 2.0. However, despite training for 50,000 iterations each, it
seemed that these models also did not converge despite also using the embedding (Figure 4). In
fact, the model with learning rate 2.0 had a rapidly increasing loss over time. The maximum BLEU
score achieved by these models was 0.063, which was not much of an improvement over our initial
model, and much lower than our final model. This could have been due to the short training time in
comparison to our final model, but it is more likely due to the small size and low complexity of each
of the experimental models. We tried to improve performance by increasing the number of layers
from 1 each to 2 each in our final model, as well as increasing the number of hidden units from 32 to
512.

Our final model with the IWSLT parameters and a pre-trained embedding performed much better,
although the output translations were still not human-quality[6]. The training loss curve seemed to
converge at around 80,000 iterations, and the maximum BLEU score achieved by the model on the
development set was 0.2474 (Figure 5a). Although this performance is certainly an improvement
over our baseline model, the translations produced by the final model seemed unrelated to the source
Chinese sentences. The English translated output had repetitive beginnings (often starting with some
form of "The US"), and focused on United States politics and economics even if the source sentence

4



Figure 4: Learning rate experiment on models with pre-trained 64-unit embeddings, with 1 layer each
for the encoder and decoder and 32 hidden units. Models were trained for 50,000 iterations. We tried
learning rates of 0.01, 0.1, 0.5, and 2.0 (in orange, data not shown for the model with 2.0 learning
rate). The training loss does not improve much over time for these smaller, and the final BLEU score
for each of these models was very low compared to the score for our final model (gray). The training
loss of the final model decreased faster, oscillated at a lower amplitude, and converged to a lower
value than the other, less complex models.

had different content (Figure 5b). This may indicate that our model is biased towards political text
and sentences involving the United States, perhaps due to unrepresentative training data.

Figure 5: (a) Training loss curve for the final model with a pre-trained embedding or Chinese word
segmentation. Training loss is plotted on the y-axis and number of iterations on the x-axis. The
training loss is still oscillatory, but decreases over time until eventual convergence after around 80,000
iterations. (b) Output sentence examples from the baseline model. These sentences are much closer
to real English sentences, but they seem to be based on a common theme (United States politics) that
is largely unrelated to the source Chinese sentences. The best BLEU score for this model was 0.247.

6 Conclusions and Future Work

In this work, we have obtained a dataset for a Chinese-to-English machine translation task, split it,
and preprocessed the data. We trained a simple baseline model with a 1 layer LSTM encoder and a
1 layer LSTM decoder layer on our dataset, and we have trained a series of more complex models
with pre-trained embeddings an various hyperparameters to improve performance. Although our
final tuned model had some gaps in performance, there are other hyperparameters we can modify for
better results. Some strategies for improvement would be to add more encoder and decoder layers,
increase the number of hidden nodes, increase the size of the embedding vectors, further tune the
learning rate, tune the dropout probability, and try different optimization algorithms. To improve the
model performance further, we can incorporate even more data from the WMT19 dataset and train
the model for a longer time. We could also consider using a different evaluation metric that is more
applicable for sentence-level data, such as the GLEU score applied in [8].

5



7 Contributions

Cynthia Hao performed literature review and defined project scope; located appropriate datasets and
existing model architectures for the translation task; set up computational resources on AWS; loaded,
segmented, and preprocessed the data; adapted code from two NMT tutorials for model training;
trained the baseline and final models; performed hyperparameter selection; and contributed to all
parts of the writeup.

Zhuoer Gu performed literature review; helped with decision-making on hyperparameter tuning and
model architecture; and contributed to the final presentation and the report writeup.

We would also like to express our gratitude to TA Sherry Ruan for her advice and help in our project.

8 Code

Model code (an iPython notebook with data preprocessing code and model parameters, as
well as code from the Tensorflow tutorial) can be found at the following private Github link:
https://github.com/hyacynth/cs230-finalproject. Please contact us if you do not have access.

References
[1] Loic Barrault et al. “Findings of the 2019 Conference on Machine Translation (WMT19)”. In:

Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers,
Day 1). Florence, Italy: Association for Computational Linguistics, Aug. 2019, pp. 1–61. DOI:
10.18653/v1/W19-5301. URL: https://www.aclweb.org/anthology/W19-5301.

[2] Wikimedia Foundation. ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared
Task: Machine Translation of News. URL: http://www.statmt.org/wmt19/translation-
task.html.

[3] Edouard Grave et al. “Learning Word Vectors for 157 Languages”. In: Proceedings of the
International Conference on Language Resources and Evaluation (LREC 2018). 2018.

[4] The Stanford Natural Language Processing Group. Stanford Word Segmenter. URL: https:
//nlp.stanford.edu/software/segmenter.html. (accessed: 01.09.2016).

[5] Hany Hassan et al. “Achieving Human Parity on Automatic Chinese to English News Transla-
tion”. In: CoRR abs/1803.05567 (2018). arXiv: 1803.05567. URL: http://arxiv.org/abs/
1803.05567.

[6] Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. “Neural Machine Translation (seq2seq)
Tutorial”. In: https://github.com/tensorflow/nmt (2017).

[7] Ashish Vaswani et al. “Tensor2Tensor for Neural Machine Translation”. In: CoRR
abs/1803.07416 (2018). arXiv: 1803.07416. URL: http://arxiv.org/abs/1803.07416.

[8] Yonghui Wu et al. “Google’s Neural Machine Translation System: Bridging the Gap between
Human and Machine Translation”. In: CoRR abs/1609.08144 (2016). arXiv: 1609.08144. URL:
http://arxiv.org/abs/1609.08144.

6

https://doi.org/10.18653/v1/W19-5301
https://www.aclweb.org/anthology/W19-5301
http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
https://nlp.stanford.edu/software/segmenter.html
https://nlp.stanford.edu/software/segmenter.html
https://arxiv.org/abs/1803.05567
http://arxiv.org/abs/1803.05567
http://arxiv.org/abs/1803.05567
https://arxiv.org/abs/1803.07416
http://arxiv.org/abs/1803.07416
https://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144

	Introduction
	Related work
	Dataset and Features
	 Methods 
	Experiments/Results/Discussion
	Conclusions and Future Work 
	Contributions
	Code

