Stroke Detection and Dating from FLAIR MRI Scans
- Winter 2021

Alex Maruniak Caroline Zanze Hayden Hofmann
Stanford University Stanford University Stanford University
alexemar@stanford.edu ckzanze @stanford.edu haydenhofmann @stanford.edu
Abstract

No neural network MRI stroke classification precedents exist. Nor has there been
any published work done in stroke dating. Being able to classify when a stroke
occurs is extremely important for the treatment of the patient because treatment
is based on the time of onset. Our model detects stroke with >96% accuracy.
Furthermore, we got preliminary results in the stroke dating task. We distinguished
between healthy brain scan, acute stroke, and subacute stroke with 88% accuracy.

1 Introduction

Stroke detection and dating are areas ripe for exploration through deep learning. Stroke dating
involves determining the time of onset of the stroke. The four main categories for this task are
hyperacute (<1 day), acute (1 - 7 days), subacute (1 week - 3 weeks) and chronic (>3 weeks). A
patient’s treatment is determined based on which of these categories they belong to.

Detecting a stroke and determining when it occurred can change the course of treatment for patients.
For example, sometimes strokes inhibit a patients ability to tell a doctor when their symptoms began.
In these cases, doctors must use rely solely on scans to diagnose patients.

Our ultimate vision is use deep learning to help doctors better detect and date strokes. Since there
is no precedence for MRI stroke detection with neural networks, we must first achieve the task of
reliable stroke detection.

2 Related work

The work we have found in the stroke imaging field all employ convolutional neural networks
(CNNs)[1][2]. We found one stroke detection network [1]. It uses CT scans as inputs. In practice,
doctors do use CT scans to diagnose strokes, but they also use MRI [3]. Since there is very little work
on stroke detection, we looked into other diseases in our background research. There a precedence
for using CNNs on MRI brain scans for a variety of diseases including Alzheimer’s [4]. Other work
in stroke imaging includes segmenting strokes using U-Nets [5].

We did not find any published neural networks attempting the task of stroke dating—the temporal
classification of strokes.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

3 Dataset and Features

We used a dataset of MRI scans provided to us by our mentor, Dr. Elizabeth Tong. The dataset contains
MRI scans of 11 control patients, 90 acute stroke patients, 32 subacute stroke patients, and 71 chronic
stroke patients. For each patient, there was data from 3 types of MRI scans: diffusion-weighted
magnetic resonance imaging (DWI), apparent diffusion coefficient (ADC), and fluid-attenuated
inversion recovery (FLAIR). Each scan is a dicom file corresponding to a 512x512 resolution image.
The number of scans within and across the scan types differed from patient to patient. Each patient
also has a csv file listing which FLAIR slices in which a stroke is visible.

For this specific project, we only used the FLAIR scans and csv files, but the vastness of this dataset
allows for promising future exploration.

Subacute
Iwk — 3wk

Chronic
>3 wk

3

Figure 1: Appearance of acute, ;ubacute, and chronic strokes in DWI, ADC, and FLAIR scans.

We performed experiments on three subsets of the greater dataset. The first contained 2 classes:
negative and positive. The negative class contained all 1318 FLAIR slices from control patients.
The positive class contained the FLAIR slices with visible stroke from acute, subacute, and chronic
patients. This class contained 2168 scans. Next, we constructed a similar dataset with a positive and
negative class. The positive class was the same as the previous experiement, but the negative class
also contained "negative slices" from acute and subacute stroke patients—slices which did not show
a stroke. This negative class contained a total of 13618 dicom files. However, in our preprocessing
code, we shuffled these files and randomly selected from them so that the classes were balanced. In
our third and last experiment, we created three classes: negative, positive acute, and positive subacute.
The negative class is the same as that from the second experiment. The positive acute class and
positive subacute class consist of all 1173 and 489 FLAIR slices containing stroke for the acute and
subacute patients respectively.

In each of these data sets, our training, validation, and test splits comprised 64%, 16%, and 20% of
the data, respectively.

4 Methods

Due to the sparsity of work done in the field of stroke imaging, we could not find an existing model
compatible with or task. Instead, we found and employed a tumor classification model. As illustrated
in the below diagram, the model uses a series of convolutional layers, batch normalization, ReLu

activations, and MaxPools. At the end of the archicecture, the activation is flattened and passed
through two consecutive dense layers. These layers include dropout if specified. The last layer is the
softmax. The first two experiments are binary classification problems; they output whether the scan
is positive or negative. The third experiment had three classes: negative, acute, and subacute.

6912 x1
512 x 512 x1 127 x 127 x 32 6912 x 1

63 x 63 x 64
31x31x64

14 x 14 x 96 6x6x 192

[negative,
@ positive]
l [negative,
acute,
subacute]

6912 x 1

Figure 2: Model Architecture

= = = o B 5

Convolution MaxPool Flatten Dense Softmax, 3 Softmax, 2
BN ReLu classes classes
RelLu

Figure 3: Model Architecture Key

We used stochastic gradient descent with Nesterov momentum, also known as Nesterov Accelerated
Descent. This smooth out the steps of gradient descent and uses a look-ahead term in order to ensure
that the algorithm slows down when approaching a minimum.

Momentum update Nesterov momentum update

“lookahead"” gradient
step (bit different than
original)

momentum
step

momentum
step
actual step

actual step

gradient
step

Figure 4: Diagram demostrating Nesterov momentum [6]

For this, we will refer to parameters W and b as 6, since we apply the same formulas to each. We use
the formulas

vy = Bui—1 + VJg(0 — Buy_1)

0 =0— av

Where 6 — Sv;_; gives an approximation of the next position our parameters will be [7].

We used categorical cross-entropy loss, as is used often with binary classifiers and softmax outputs.
The equation for this loss is

Loss(y,§) = — Yoy * log(§D)

Where there are n test examples, and y(9 and §(*) are the true value of the output and our
models predicted value of the output for example ¢, respectively.

S Experiments/Results/Discussion

As a group, we followed more of a "Panda approach" where we babysat one model. The reason for
this was that the model we found online worked well with minimal changes. We decided that we
could best create an accurate model by working hard to optimize it with different hyperparameters
and datasets modifications. The hyperparameter tuning was critical in improving both the train and
validation accuracy of our model. The main hyperparameters we tuned were the learning rate (alpha)
and the momentum (beta). We decided to run a grid search on these two hyperparameters in order to
find the optimal combination. We ran the grid search testing alpha at intervals of 10" where r ranged
from 1 to 5 and beta at intervals of 1 — 10~* where k ranged from 1 to 3. Table 1A below outlines
the hyperparameter grid search results. In the end, we found that a learning rate of 0.0001 and a
momentum of 0.9 provided both the highest train and validation accuracy (highlighted in green).

Alpha Beta Train Accuracy Val Accuracy
0.00001 0.99 0.9726 94.09
0.00005 0.99 97.26 96.06

0.0001 0.99 96.5 97.13
0.001 0.99 86.91 89.78
0.01 0.99 diverge diverge
0.1 0.99 diverge diverge

0.00001 0.9 0.8395 86.56

0.00005 0.9 94.44 95.16

0.0001 0.9 0.9646 96.42

0.001 0.9 0.978 97.49
0.01 0.9 0.6152 64.87
0.1 0.9 diverge diverge

0.00001 0.999 0.9547 94.98

0.00005 0.999 0.826 88.17

0.0001 0.999 0.8731 89.25
0.001 0.999 diverge diverge
0.01 0.999 diverge diverge
0.1 0.999 diverge diverge

Table 1A: Grid Search Results

Additionally we chose a mini-batch size of 10 to help speed up our training during our hyperparameter
search. Increasing the batch size led to marginally better results but took significantly longer to train.
The mini-batch size of 10 was the perfect balance between efficiency and accuracy.

In our first experiment, we used positives from scans from all of our stroke patients and negatives
scans just from control patients who didn’t have a stroke. Our confusion matrix in Table 1 highlights
that this model was quite effective.

Confusion Matrix
Predict O | Predict 1
Actual 0 247 17
Actual 1 7 399

Table 1: Classification for Control and Positives Data

In the second experiment, we used the same positive and negative examples but this time added
negative scans from patients who had a stroke. This more accurately reflects how our model would
be deployed. In looking at Table 2, it is clear that our model remained equally effective.

We used accuracy as our metric because ultimately the application of stroke classification is to help
doctors accurately decide which MR scans have a stroke present. In Table 4, we see that the recall
is higher than the precision meaning that we have more false positives than false negatives. This is
important for our application because it is patients’ lives depend on diagnosis. Therefore flagging an

Confusion Matrix
Predict O | Predict 1
Actual 0 246 18
Actual 1 7 399
Table 2: Classification for Negatives/Positives Same Patient Data

image as a stroke is much better than missing a possible diagnosis. We did not overfit to the training
set because the train and validation were always very similar. Additionally the test accuracy was
close to our train accuracy.

We trained with and without dropout regularization for our model, and while the training accuracy’s
were similar, the validation accuracy without dropout was slightly worse than it was with dropout.
Therefore, we decided to leave in dropout regularization for all of our trials.

Once we optimized our parameters, we tested our model. The results of the first and second tasks are
summarized in the following table:

Model Summary

Precision | Recall | Train Accuracy | Validation Accuracy | Test Accuracy

Control vs. Positive 95.9 98.3 97.8 97.5 96.4

Negative from Positive 95.7 98.3 97.1 97.3 96.3

Table 3: Classification Summary for Different Datasets

Given our promising results and high accuracy, we took some preliminary steps in stroke dating
problem. We modified our model to perform softmax on three classes instead of two. The three
classes were subacute positive, acute positive, and negative. Using the same hyperparameters we
optimized for our main problem, we got a train accuracy of 89.58%, a validation accuracy of 85.31%),
and a test accuracy of 87.94%.

6 Conclusion/Future Work

Ultimately, our model was very effective in stroke detection regardless of the distribution of the
negative data. Although we believed we only had time to train a stroke detection model, we had early
success. After some parameter tuning, we had a model with >96% train and test accuracy. We were
therefore able to start exploring stroke detection as mentioned at the end of the previous section. The
results were promising, and we are optimistic about continuing to work on it.

Further steps include adding the positive chronic data, testing out more batch sizes, balancing the
datasets via upsampling, and experimenting with the model archetecture. We could also split the acute
class into hyperacute and acute. Adding another class would increase the specificity and usefulness
of our model.

Looking even further ahead, once we have built a strong model to date strokes from individual MRI
FLAIR slices, we can expand our inputs. Each input could represent a single patient, as it would
include all their scans. We would try initially with only the FLAIR scans, but we anticipate that
the model wouldn’t differentiate well between the 5 classes. Therefore we would probably add the
DWI and ADC scans as well. Although this would make training and performance much slower, we
anticipate that it would yield the best results.

7 Contributions

Much of the time, Hayden, Caroline and Alex worked together closely on the project, changing
the code and debugging together. This was mainly accomplished through weekly zoom meetings.
Hayden completed the grid search, and Alex and Caroline did more data labeling and uploading.

References
Code: [https://github.com/21Vipin/Medical-Image-Classification-using-deep-learning]

Acknowledgement: Dr. Elizabeth Tong was our mentor, who provided us with the idea for
the project as well as all of the data.

Libraries Used: Tensorflow, Keras, pydicom, pickel, hSpy, pandas, scikit-learn

[1] D. R. Pereira, P. P. R. Filho, G. H. de Rosa, J. P. Papa and V. H. C. de Albuquerque, "Stroke Lesion Detection
Using Convolutional Neural Networks," 2018 International Joint Conference on Neural Networks (IJCNN), Rio
de Janeiro, Brazil, 2018, pp. 1-6, doi: 10.1109/IJCNN.2018.8489199.

[2] Soun, J. E., Chow, D. S., Nagamine, M., Takhtawala, R. S., Filippi, C. G., Yu, W., Chang, P. D. (2021).
Artificial Intelligence and Acute Stroke Imaging. American Journal of Neuroradiology, 42(1), 2-11.

[3] Allen, L. M., Hasso, A. N., Handwerker, J., Farid, H. (2012). Sequence-specific MR imaging findings that
are useful in dating ischemic stroke. Radiographics, 32(5), 1285-1297.

[4] Lin, W., Tong, T., Gao, Q., Guo, D., Du, X., Yang, Y., ... Alzheimer’s Disease Neuroimaging Initiative.
(2018). Convolutional neural networks-based MRI image analysis for the Alzheimer’s disease prediction from
mild cognitive impairment. Frontiers in neuroscience, 12, 777.

[5] Zhou, Y., Huang, W., Dong, P., Xia, Y., Wang, S. (2019). D-UNet: a dimension-fusion U shape network for
chronic stroke lesion segmentation. [IEEE/ACM transactions on computational biology and bioinformatics.

[6] Bushaev, Vitaly. “Stochastic Gradient Descent with Momentum.” Medium, Towards Data Science, 5 Dec.
2017, towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d.

[7] Sebastian Ruder. “An Overview of Gradient Descent Optimization Algorithms.” Sebastian Ruder, Sebastian
Ruder, 20 Mar. 2020, ruder.io/optimizing-gradient-descent/.

	Introduction
	Related work
	Dataset and Features
	 Methods
	Experiments/Results/Discussion
	Conclusion/Future Work
	Contributions

