
Learning To Learn: A Dual Network Approach To Multi-Class Active Learning

Sameer Khanna 1

Abstract
Active Learning dramatically reduces the numbers of vectors one
needs to label for a given problem space, a boon for industries where
labeling can be time consuming and expensive such as medicine. Tra-
ditional Active Learning’s biggest downside is its volatility in perfor-
mance, in some cases being worse than randomly selecting vectors
to label. Deep Learning Based Active Learning, a dual network ap-
proach that uses one network to select vectors to label via a ranking
system and the other to pseudo-label vectors, solves both of these
downsides as we show on a variety of real world problem spaces.

1. Introduction
Supervised Learning (SL) is the holy grail of Machine Learning, however it typ-
ically requires large swaths of labeled data. This can hamper its usage in fields
such as medicine, where labeling data is prohibitively expensive. Active Learn-
ing (AL) is an approach that aims to reduce the number of labels required for
algorithms by actively selecting queries for an oracle to label.

While empirical results suggest that AL does work for a variety of different prob-
lem spaces [2]–[6], there is no guarantee that AL will work for the problem space
one is considering. Using AL can actually require more labelled data than ran-
domly sampling (RS) data to label [7], [8].

The issue is that traditional AL focuses on a singular, model specific strategy.
While this works for many spaces, each strategy has potential roadblocks, such
as uncertainty sampling’s susceptibility to choosing outliers [9], and query-by-
committee approaches focusing on inconsequential regions of the problem space
[10].

We propose approaching AL as a regression problem, with popular and novel
strategies restructured as features that are pulled from a variety of different model
types. We show that our Deep Learning Based Active Learning (DLAL) achieves
optimal performance when compared to alternative AL strategies.

1Stanford University, Palo Alto, California, USA. Correspondence to:
Sameer Khanna <sameerk@stanford.edu>.

2. Identifying Optimal Seed Vectors
In order to start querying vectors, we need an initial set of data with which we can
train a preliminary model. While traditional AL algorithms create this set via ran-
dom sampling [11], various studies have shown that utilizing pre-clustering tech-
niques to determine our initial set of labeled vectors can lead to improvements in
final model performance [12], [13]. Pre-clustering has only been shown to work
in low dimensional, binary classification tasks. Here, we propose an expansion to
enable seed identification even in high-dimensional multi-class problem spaces.
The entire process is illustrated in Figure 1.

Our initial seed vectors are identified by clustering via Gaussian Mixture Model-
ing (GMM) [14], using the cluster medoids as our seeds. The optimal clustering,
assessed by both number of clusters and distribution of points within clusters, is
determined using the average silhouette approach [15].

Clustering techniques have performance issues when utilized in high dimensional
spaces, due to higher data sparsity and increased irrelevance of notions of dis-
tance [16]. To solve this issue we propose the utilization of the manifold learning
technique t-Distributed Stochastic Neighbor Embedding (t-SNE) [17] for dimen-
sionality reduction prior to applying clustering.

There is a strong argument that t-SNE is uniquely suited to our goals. While other
variants of manifold learning are catered towards unfolding a single continuous
low dimensional manifold, t-SNE focuses instead on structures at the local level.
Additionally, t-SNE is better suited at separating data comprised of numerous
manifolds at once as is often the case in the real world [18].

t-SNE also compares well for our use case compared to other dimensionality
reduction techniques that are not manifold learning algorithms. Such transforma-
tions typically leave data in lower dimensional representations projected on top
of each other as dimensions disappear [19]. This results in the output of these al-
ternatives being hard to decipher and restricts the ability to make clear statements
about separability in higher dimensional spaces when compared to t-SNE.

Using t-SNE allows us to better highlight intraclass disparities. For example, as
shown in Figure 1, applying our novel seed identification process enables us to
identify all 3 hand-drawn versions of the number 1 found in the dataset; applying
GMM directly would only supply us one of these examples.

High Dimensional Input
Data

Selected Medoids In
Original Data Format

Applied
t-SNE

Applied GMM Clustering
(Clusters are Color Coded)

Medoid Identification
(Medoids are large back dots)

Figure 1. Process of Seed Identification on the Optical Recognition of Handwritten Digits Dataset [1]

Learning To Learn: A Dual Network Approach To Active Learning

3. Vector Selection Strategies
Once we have some labeled data, our preliminary model is trained on the given
data and aims to classify the remaining points. In order to identify the optimal
vector to query the oracle about, we compute heuristics for each unlabeled vector
in our problem space.

3.1. Shannon’s Entropy

Shannon’s entropy (SE), a metric that represents the total amount of in-
formation stored in a distribution, is typically thought of as a measure
of uncertainty in the field of machine learning [20]. SE is defined by
argmaxx−

∑
i
p(yi|x; θ) log(p(yi|x; θ)).

The more uniform a distribution is, the larger the entropy. A model with a
high confidence or probability score for a particular class will have low entropy,
whereas a model that is not confident in deciding between classes will have high
entropy, making the metric ideal for modeling uncertainty.

3.2. Confidence Based Strategies

Entropy takes into account uncertainty across all available classes, but a model
may have a hard time deciding between two classes. Margin of Confidence (MC),

defined by 1−
(
p(y∗

(1)
|x; θ)− p(y∗

(2)
|x; θ)

)
, and Ratio of Confidence (RC), de-

termined via
p(y∗

(2)
|x;θ)

p(y∗
(1)
|x;θ) , are metrics that aim to better identify such scenarios

[21]. Here, y∗
(n)

denotes the nth most likely class based on the model’s pre-
diction probabilities. MC is the difference between the top two most confident
predictions, while RC is their ratio.

An alternative approach is simply choosing the point whose classification
the model has the Lowest Confidence (LC) in, as is shown in its formula
argminx p(y∗(1)|x). Despite its simplicity, LC has been shown to work well
with conditional random fields [22] as well as for active learning in information
extraction tasks [6], [23].

3.3. Distance from Hyperplane

One potential strategy for labeling points is to choose points we expect to maxi-
mally narrow the existing margins. The location of a vector with respect to a deci-
sion boundary determines the magnitude its labeling changes decision boundary
position, with closer vectors having a greater affect. Schohn et.al. has described
the approach as a simple and effective form of divide and conquer [24].

Different problem spaces will have differing dimensions, and varying separation
between classes. In order to utilize metrics across problem spaces, we scale a
vector’s boundary distance by the average distance for all points in the problem
space.

3.4. Orthogonality to Labeled Points

When performing AL in high dimensional spaces, it is easy for algorithms to ig-
nore particular dimensions or pockets within a problem space due to the nature of
having dimensions orders of magnitude larger than the number of examples. This
can lead to a major disconnect between the decision boundaries of our model and
the true underlying class separation. By searching for examples that are orthogo-
nal to the space spanned by the labeled set, we give the learner information about
dimensions it has not yet explored. In order to utilize these principles even in
problem spaces of lower dimensionality or with higher space coverage, we relax
this constraint to allow for vectors with large angles to be selected. Our orthogo-
nality metric (OM), minl∈L cos−1 <xi,l>

|xi||l|
, finds the smallest angle between the

unlabeled vector xi in question and the vectors in the labeled set L.

3.5. Information Density

Many AL algorithms aim to query vectors our given model is most uncertain of,
leading to a proclivity to query outliers whose labeling will have little to no affect
on model performance. This motivating factor led to the development of the infor-

mation density framework (IDF), (argmaxx φA(x))
(

1
U

∑
u
sim(x, x(u))

)β
[6]. Manipulating IDF to serve our purpose, we coin the information density
metric (IDM), 1

U

∑
u
sim(x, x(u)). IDM aims to scale the strategy by weigh-

ing it against the average similarity to all other instances in the input distribution.
sim refers to a similarity function such as cosine similarity, the dot product be-
tween normalized vectors, [25] or Euclidean similarity, which is the reciprocal
of Euclidean distance [26]. The higher the information density, the more similar
the given instance is to the rest of the data. While Cosine IDM defines the center-
most cluster as most important, Euclidean IDM prefers the center of clusters.

3.6. Perturbation

Inspired by Adversarial Attacks and its implications for deep learning mod-
els [27], [28], we aim to extend its usefulness to AL for all model types by
identifying the maximal shift in model confidence incurred by adding pertur-
bation to each unlabeled vector. Let ε ∼ N (0, 1), then we aim to calcu-
late DKL(p(y|x)||p(y|x + ε); in other words we wish to calculate the Kull-
back–Leibler divergence (DKL) [29] of the model’s prediction probabilities for
a given vector before and after adding perturbation. The larger the divergence
after adding ε, the more crucial a label is to improve model performance.

3.7. Expected Gradient Length

Discriminative models are typically trained using gradient-based optimization;
the amount a model will be changed at a given time can be quantified by
the expected gradient length (EGL) [30]. In order to make the largest up-
dates to the model possible, it will be optimal to choose a vector x that
leads to the largest change in our objective function `, as determined via
argmaxx

∑
i
p(yi|xi; θ) ‖∇`(L ∪ (x, yi); θ)‖. The vector’s gradient for a pos-

sible class is scaled by its prediction probability as output by the current model.

3.8. Consensus Based Strategies

Consensus based strategies strategies utilize multiple models in various combina-
tions in order to identify vectors of interest. Query-by-committee (QBC) consen-
sus has a committee composed of multiple models trained on our set of labeled
data with each model having a unique initialization [31]. Co-Training [32] and
Co-Learning [33] approach consensus through different lenses, using differing
subsets of features and using different model types altogether respectively. No
matter the consensus strategy, they all function in a similar way. The vectors that
models disagree the most over have the most potential information to give; these
vectors are the most optimal to label.

4. Choosing a Vector
Every strategy detailed in Section 3 approaches the problem space in a unique
manner. By reclassifying each strategy into a feature to be fed into a network,
we will be able to consider all possible strategies when determining the optimal
vector to label. Unlike most AL strategies, each of the features are compiled from
up to eight unique models and not solely the model to be trained. Each feature
and the relevant ML model is detailed in Table 1.

Table 1. Compiled Features
Heuristic Relevant ML Model

Shannon’s Entropy Model To Be Trained
Margin Of Confidence Model To Be Trained
Ratio Of Confidence Model To Be Trained
Least Confidence Model To Be Trained
Decision Boundary Ratio Linear SVM
Decision Boundary Ratio Sigmoid SVM
Decision Boundary Ratio RBF SVM
Decision Boundary Ratio Polynomial SVM
Angle From Labeled Set N/A
Cosine Density N/A
Euclidean Density N/A
QBC Model To Be Trained
Co-Training Model To Be Trained
Co-Learning Perceptron, Random Forest, Softmax
Expected Gradient Length Softmax Regression
Perturbation Model To Be Trained
Number of Features N/A
Number of Classes N/A

Learning To Learn: A Dual Network Approach To Active Learning

xU
(1)

xU
(2)

xU
(3)

xU
(4)

xU
(5)

xU
(6)

xU
(7)

xU
(8)

xU
(9)

xU
(10)

xL
(1)

xL
(2)

xL
(3)

xL
(4)

xL
(5)

1. Select a vector
(green) to consider

labeling.

xU
(10)

xU
(1)

xU
(9)

xU
(6)

xU
(2)

xU
(4)

xU
(3)

xU
(8)

xU
(7)

xL
(1)

xL
(2)

xL
(3)

xL
(4)

xL
(5)

2. Set aside selected
vector. Shuffle rest of

unlabeled set.

xU
(5)

xU
(10)

xU
(1)

xU
(9)

xU
(6)

xU
(2)

xU
(4)

xU
(3)

xU
(8)

xU
(7)

3. Select subsets of unlabeled
data (blue) to merge with our

selected vector.

xU
(5)

xU
(10)

xU
(1)

xU
(9)

xU
(6)

xU
(2)

4. Create a union of the labeled
set and our merged subset. Train

our model on the union and
evaluate performance on a

holdout set.

xL
(1)

xL
(2)

xL
(3)

xL
(4)

xL
(5)

5. Using a sliding window, repeat steps 3 and
4 for all windows with our given window size
and stride. The expected future performance

due to labeling our selected vector is
estimated by the average performance of all

unions including the vector.

xU
(5)

xU
(1)

xU
(9)

xU
(6)

xU
(2)

xU
(4)

6. Repeat steps 1 through 5 for
all unlabled vectors. Convert the

expected future performance
metrics into rankings for all

vectors.

xL
(1)

xL
(2)

xL
(3)

xL
(4)

xL
(5)

xU
(5)

xU
(10)

xU
(1)

xU
(9)

xU
(6)

xU
(2)

xU
(10)

xU
(1)

xU
(9)

xU
(6)

xU
(2)

xU
(4)

xU
(3)

xU
(8)

xU
(7)

xU
(5)

xU
(5)

xU
(5)

xU
(10)

xU
(1)

xU
(9)

xU
(6)

xU
(2)

xU
(5)

xU
(10)

xU
(1)

xU
(9)

xU
(6)

xU
(2)

xU
(5)

xU
(10)

xU
(1)

xU
(9)

xU
(6)

xU
(2)

Figure 2. Random Sub-sampling Based Vector Ranking

4.1. Training Set Generation

Our models, both custom instances of Dense Residual Networks, are trained on
synthetic datasets based on the Madelon dataset [34], [35] with varying numbers
of dimensions, size, and number of clusters. For each set, we alternate between
identifying starting values by random selection, or via the seed identification pro-
cess detailed in Section 2. From here we iterate through all unlabeled vectors one
after another, computing all heuristics listed in Table 1.

4.2. Querying The Oracle For Labels

After our training data is compiled, a vector querying neural network (VQNN)
is trained to predict from the features detailed in Table 1 the relative ranking of
vectors most optimal to label. The larger the ranking, the more confident the
model is that the vector is an optimal point to label. We send the vector with the
largest ranking to the oracle for labeling.

While ranking vectors based on their direct affect to model performance due to
their addition to the labeled set of data would be straightforward, Dasgupta et.al.
found that such greedy approaches are not optimal because they don’t take into
account the way in which a query reshapes the search space [36]. This leads
to increasingly subpar performance for greedy AL algorithms as they continue
trying to select vectors to query.

Instead, we estimate the potential benefit labeling the given vector will have by
taking the average performance increase of labeling multiple random subsets of
unlabeled data that include the vector in question. The vector with the largest
average performance increase corresponds to the vector that is both most infor-
mative as well as best sets up the rest of the query space for optimal further search.
The full process used for ranking vectors is shown in Figure 2.

Note that the proposed ranking algorithm cannot be used directly to select vectors
to query. It assumes knowledge of the true labels of all unlabeled data, which de-
feats the purpose of AL. By using our VQNN to predict the random sub-sampling
based vector ranking, we can optimally select vectors for labeling without requir-
ing access to nonviable information.

While being able to rank all vectors correctly is ideal, we want to provide extra
care and attention to the set of vectors whose rankings are close to the optimal;
this helps ensure we can always choose the best vector at a given time. To this
end, we use the following loss function 1

N

∑
i
exp(− (yi−1)2

2τ2
)(yi− ŷi)2, where

yi is the true ranking, ŷi is the predicted ranking, N is the number of vectors, and
τ is a hyperparameter that controls how quickly weight falloff occurs.

4.3. Incorporating Semi-Supervised Techniques

While AL focuses on identifying vectors of concern in a problem space, Semi-
Supervised Learning (SSL) aims to take advantage of vectors our given model is
confident of. The two sides of the same coin relationship between AL and SSL
has allowed their concerted use in previous research with results greater than
using one or the other alone [5], [37]–[39].

Focusing on pseudolabeling, we rephrase SSL as a binary classification problem.
Our second network, the vector pseudolabeling neural network (VPLNN), aims
to predict whether the given vector has been correctly labeled by the model.

A major issue with pseudolabeling is that is prone to producing incorrect results
when the model produces unhelpful targets for unlabeled data [40]. To mitigate
this issue, a vector is only pseudolabeled if it meets these criteria: the model to
be trained is confident in its classification, the VPLNN marks it as valid, and the
vector satisfies the smoothness constraint. The smoothness constraint assumes
that vectors close together will be of the same class, and there is large separation
between vectors of different classes. Requiring fulfillment of all criteria helps
ensure an extremely low likelihood chance of incorrect pseudolabels occurring.

5. Architecture
5.1. Dense Residual Unit

Taking inspiration from the ResNet and VGG-16 architectures, our VQNN and
VPLNN models are residual networks that are designed to be highly modular. A
module, which we call the Dense Residual Unit (DRU), is shown in Figure 3.
Unlike in the original ResNet architecture, we use Dense layers in lieu of Con-
volution layers as the weight sharing assumption does not hold for our compiled
feature set. We then scale the residual mapping via a Batch Normalization layer
and pass the resulting output to our activation function of choice.

Dense
Layer

Add Scaling

BatchNorm

Dense Residual
Unit

ReLU

Activation
Function

Figure 3. Dense Residual Unit

Learning To Learn: A Dual Network Approach To Active Learning

5.2. Vector Querying Neural Network

The architecture for VQNN is shown in Figure 4. For our hidden layers, we
use the Tanh activation with later layers being slightly larger than those in the
beginning. We found during testing that this setup helps better identify the correct
ordering of high ranked vectors. Since rankings must be non-negative in value,
we use a ReLU output activation.

18
 In

pu
t

3
Ta

nh
 D

en
se

3
Ta

nh
 D

R
U

3
Ta

nh
 D

R
U

5
Ta

nh
 D

en
se

5
Ta

nh
 D

R
U

5
Ta

nh
 D

R
U

5
Ta

nh
 D

R
U

R
eL

U
 O

ut
pu

t

Figure 4. VQNN Architecture

5.3. Vector Pseudo-labeling Neural Network

The architecture for VPLNN is shown in Figure 5. We found that a standard
ReLU focused architecture performed the best in improving model accuracy.
Since VPLNN performs binary classification, our output activation is the stan-
dard sigmoid function.

18
 In

pu
t

35
 R

eL
U

 D
en

se

35
 R

eL
U

 D
R

U

35
 R

eL
U

 D
R

U

35
 R

eL
U

 D
R

U

35
 R

eL
U

 D
R

U

35
 R

eL
U

 D
R

U

35
 R

eL
U

 D
R

U

35
 R

eL
U

 D
R

U

35
 R

eL
U

 D
R

U

Si
gm

oi
d

O
ut

pu
t

Figure 5. VPLNN Architecture

5.4. Hyperparameter Tuning

For training, we utilize synthetic data rather than real world datasets for train-
ing set generation due to the relatively low costs involved in obtaining additional
problem spaces to incorporate into our training set. This enables us to create
larger and more powerful models than we otherwise would have been able to, as
we need to worry about over-fitting less as the amount of data increases. Indeed,
we saw no substantial difference in performance for our models on our training
set when compared to our training-development set, indicating that model vari-
ance was not a significant issue.

What was a substantial hurdle to proceed through was the data-mismatch prob-
lem; our networks are trained on data distributions different from the distributions
they will be evaluated on. The data mismatch problem is only exacerbated by the
fact that we wish for DLAL to work on a variety of different real world problem
spaces; our target distribution is extremely complex and protean in nature.

To tune hyperparameters to mitigate data mismatch, we compiled development
and test sets via the process detailed in Section 4.1 on the evaluation datasets
listed in Table 2. Via manual coarse-to-fine random search, we identified that the
hyperparameters τ , activation functions, layer size and number, and learning rate
had the greatest affect to performance during validation.

This list of hyperparameters was too large to effectively search through man-
ually. Once we found a list of parameters to tune, we utilized the sequential
model-based optimzation approach Tree Parzen Estimation (TPE) [41]. Since
TPE tracks previous evaluation results in order to map hyperparameter sets to
probabilistic models, this enabled us to tune hyperparameters faster and has em-
pirically shown can lead to better results than alternative approaches to hyperpa-
rameter tuning.

5.5. DLAL In Its Entirety

Figure 6 shows the entire process of DLAL in action. We first select an initial
set of vectors for labeling. After training a model on this set, we enter a cycle,
where we alternate between querying vectors as described in Section 4.2 and
pseudo-labeling vectors as detailed in Section 4.3. This cycle continues until
we are confident in our labeled set of data and our target model performance is
acceptable.

Train Model
Use VQNN

To Rank
UnlabledVectors

Query Oracle On
Highest Ranked

Vector

Seed Identification Train Model

Repeat Pseudolabeling Cycle Until No
New Pseudolabels Identified

Mark High
Confidence

Vectors

Use VPLNN to
Identify Pseudolabels
From Marked Vectors

Enforce
Smoothness

Train Model

Break Cycle When
Performance Is

Satisfactory

Figure 6. DLAL Process

6. Experiments
6.1. Evaluation Datasets

In order to ascertain the effectiveness of DLAL, we use a variety of real world
datasets. From forensic analysis to disease identification to network security vul-
nerability detection, we evaluate effectiveness not only by varying number of
classes, features, and input data format, but also by picking real world problem
spaces from a wide range of topics. Table 2 gives a full list of datasets as well as
the fields they hail from.

Table 2. Evaluation Datasets
Dataset Dataset Codename Problem Topic

Optical Recognition of Handwritten Digits [1] Digits Image Classification
Iris Flower [42] Iris Pattern Recognition
Wine Quality [43] Wine Cultivar Chemical Analysis
Balance Scale [44] Balance Cognitive Development
Car Evaluation [45] Car Constructive Induction
Agaricus and Lepiota Gilled Mushrooms [46] Mushrooms Toxicology
Pen-Based Handwritten Digit Recognition [47] Pen Image Classification
Cleveland Heart Disease [48] Heart Disease Diagnosis
Multi-spectral Landsat Satellite Statlog of Neighborhoods [49] SatImage Satellite Remote Sensing
Glass Type Identification [50] Glass Forensic Analysis
Vision Group Outdoor Image Segmentation [51] Segmentation Image Segmentation
Connectionist Bench Vowel Recognition [52] Vowel Connectionist Analysis
Eryhemato-Squamous Diseases [53] Dermatology Disease Diagnosis
IoT Device Identification On Corporate Networks [54] IoT Network Security

6.2. Baseline Algorithms

In order to evaluate the performance of DLAL, we compare its performance to the
baselines listed in Table 3. RS was chosen to act as minimum threshold; if an AL
algorithm performs worse than RS, then we consider the algorithm to have failed
on the given dataset. Algorithms EGLAL, LDAL, EAL, EIDAL, MCAL, RCAL,
and LCAL were selected due to their ubiquity in AL publications as well as in
industry. MVAL was chosen due to being showcased in its original publication as
one of the best retraining based AL algorithms [55], a subclass of AL where the
model in question is retrained for every unlabeled vector for every possible class
the vector could be. MVAL can achieve great performance albeit at immense
computational cost, thus acting as a high bar to compare DLAL against.

Table 3. Baseline Algorithms
AL algorithm AL Codename

Expected Gradient Length Active Learning EGLAL
Linear Decision Boundary Active Learning LDAL
Entropy Active Learning EAL
Entropy - Euclidean Information Density Active Learning EIDAL
Margin Confidence Active Learning MCAL
Ratio Confidence Active Learning RCAL
Least Confidence Active Learning LCAL
Passive Learning / Random Selection RS
Maximizing Variance Active Learning MVAL

Learning To Learn: A Dual Network Approach To Active Learning

Digits Iris Wine Balance

Car Pen Mushroom Heart

SatImage Glass Segmentation Vowel

Dermatology IoT

RCAL
RS

MCAL
LCAL

EAL
MVAL

DLAL
EGLAL

LBAL
EIDAL

Figure 7. DLAL vs Baselines on all evaluation datasets. X-axis is number of vectors labeled. Y-axis is the scaled model performance.

6.3. Evaluation Methodology

To identify how well an AL algorithm performs on a given dataset, we first split
the given dataset into a training and a holdout set via a 70%-30% split. We
identify the optimal performance of our model to be trained by evaluating its per-
formance on the holdout set after being trained on the entire training set, a score
we call scoretrain. For each vector labeled, we will evaluate its relative per-
formance on the holdout set via the evaluation metric min(scoreAL,scoretrain)

scoretrain
,

where scoreAL is the performance of the model on the set of labeled vectors the
AL algorithm has queried so far. The AL algorithms will continue to query points
until its labeled set of vectors reaches the same performance as the entire training
set; in other words, when the evaluation metric is 1.0. AL algorithms will be
assessed based upon the number of labeled points needed as well as how volatile
the model’s performance is as the algorithm aims to reach the maximum perfor-
mance. In order to ensure all algorithms start labeling with the same number of
initial points, the baseline models will have an initial set of vectors whose number
is determined via the number of medoids selected by DLAL’s seed identification;
this initial set will be identified via random selection as is customary for AL [11].

For EGLAL, we will use softmax regression as our target model as it is the natural
extension of logistic regression, the target model used in the original paper, to
multi-class problem spaces. For the rest of the AL algorithms, we will use a
Linear Support Vector Machine in conjunction with Platt scaling [56] as the target
model due to its common usage for AL.

Each experiment was repeated 5 times, with the median outcome of each experi-
ment reported.

7. Results
Plots showcasing the performance of the AL algorithms on each dataset are
shown in Figure 7. While all AL algorithms appear to behave nicely with rel-
atively minor dips and plateaus for simpler problem spaces like Digits, the is-
sues with using single heuristic strategies becomes very clear when seeing per-
formance on more complex problem spaces like IoT, Wine, etc. In AL, we are
trying to label the minimum number of points possible in order to get an accu-
rate representation of the entire problem space. With such small sets of labeled
vectors, labeling a sub-optimal vector can lead to a dramatic shift in our represen-
tation of the problem space, and thus cause a reduction in the trained model per-
formance. This phenomenon is clearly occurring in our baseline models, which
show high volatility in performance as we label additional vectors. DLAL in com-
parison shows significantly lower volatility, a clear showcase of the vigilance and

care DLAL takes in selecting vectors for labeling that most optimally carves the
search space.

Table 4. Baseline Comparison: Number Of Vectors Labeled
Dataset Dataset Size RS EAL RCAL LBAL EGLAL EIDAL LCAL MCAL MVAL DLAL
Digits 1797 753 931 669 668 869 1137 709 933 230 64

Iris 150 22 26 26 74 12 46 24 26 69 17
Wine 178 53 65 47 109 72 81 55 62 49 10

Balance 625 198 183 123 110 203 64 97 144 184 37
Car 1728 165 306 211 204 317 141 117 159 40 13
Pen 10992 439 356 536 6305 5362 371 7257 415 638 142

Mushroom 8124 511 166 144 125 3672 557 134 149 171 51
Heart 297 132 135 130 68 115 135 101 78 69 20

SatImage 6435 1799 2954 821 145 3295 220 4131 1113 145 12
Glass 214 91 82 117 97 85 67 106 78 77 9

Segmentation 2310 355 270 202 329 1353 194 176 196 710 66
Vowel 990 487 616 373 415 627 503 497 438 339 50

Dermatology 358 101 113 91 231 142 206 79 91 63 16
IoT 2032 662 726 1396 1391 1370 1041 899 1271 566 19

DLAL not only is less volatile in its approach to the optimum, it reaches there
faster than baseline measures. Table 4 lists the number of labeled vectors each
AL algorithm needed to reach optimal performance on the target model. As can
be seen, DLAL consistently outperforms its peers, in some cases by extremely
large margins. DLAL also does not fall victim to pitfalls that affect other algo-
rithms, as evidenced by its great performance when RS outperformed baseline
AL algorithms.

Our seed identification gives DLAL an incredible headstart in initial performance
over its peers, its affects clearly shown in the datasets Digits, SatImage, Pen, and
Glass. However, while our seed identification exacerbates the difference between
a single heuristic approach and DLAL, it is not the sole reason behind DLAL’s
performance. As can be seen in the Car and Dermatology datasets, seed identifica-
tion did not give DLAL an advantage over the baseline models, due to the datasets
having poor separation. Despite this, DLAL reached optimal performance using
far fewer vectors than the baseline models.

8. Conclusion
The results show the power of DLAL’s multi-heuristic, dual-network approach.
DLAL utilizes information from multiple different heuristics with each giving
a unique view of the problem space, allowing for it to not succumb to issues
that may befall AL algorithms using single heuristics. Note that the baseline
algorithms are primarily composed of algorithms represented by the features we
feed into our neural network, yet DLAL still shined in scenarios where they failed.
These heuristics are clearly more powerful together than they are apart.

Learning To Learn: A Dual Network Approach To Active Learning

References
[1] E. Alpaydin and C. Kaynak, “Optical recognition of handwritten digits

data set,” UCI Machine Learning Repository, 1998.
[2] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with

active learning,” Machine learning, vol. 15, no. 2, pp. 201–221, 1994.
[3] C. A. Thompson, M. E. Califf, and R. J. Mooney, “Active learning

for natural language parsing and information extraction,” in ICML,
Citeseer, 1999, pp. 406–414.

[4] S. Tong and D. Koller, “Support vector machine active learning with
applications to text classification,” Journal of machine learning re-
search, vol. 2, no. Nov, pp. 45–66, 2001.

[5] G. Tur, D. Hakkani-Tür, and R. E. Schapire, “Combining active and
semi-supervised learning for spoken language understanding,” Speech
Communication, vol. 45, no. 2, pp. 171–186, 2005.

[6] B. Settles and M. Craven, “An analysis of active learning strategies for
sequence labeling tasks,” in Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing, 2008, pp. 1070–
1079.

[7] A. I. Schein and L. H. Ungar, “Active learning for logistic regression:
An evaluation,” Machine Learning, vol. 68, no. 3, pp. 235–265, 2007.

[8] Y. Guo and D. Schuurmans, “Discriminative batch mode active learn-
ing,” in Advances in neural information processing systems, 2008,
pp. 593–600.

[9] S. Ebrahimi, W. Gan, K. Salahi, and T. Darrell, “Minimax active
learning,” arXiv preprint arXiv:2012.10467, 2020.

[10] N. Roy and A. McCallum, “Toward optimal active learning through
monte carlo estimation of error reduction,” ICML, Williamstown,
pp. 441–448, 2001.

[11] B. Settles, “Active learning literature survey,” University of Wisconsin–
Madison, Computer Sciences Technical Report 1648, 2009.

[12] H. T. Nguyen and A. Smeulders, “Active learning using pre-clustering,”
in Proceedings of the twenty-first international conference on Machine
learning, 2004, p. 79.

[13] W. Yuan, Y. Han, D. Guan, and S. Lee, “Initial training data selection
for active learning,” Jan. 2011, p. 5. DOI: 10.1145/1968613.
1968619.

[14] G. J. McLachlan and K. E. Basford, Mixture models: Inference and
applications to clustering. M. Dekker New York, 1988, vol. 38.

[15] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[16] M. Steinbach, L. Ertöz, and V. Kumar, “The challenges of cluster-
ing high dimensional data,” in New directions in statistical physics,
Springer, 2004, pp. 273–309.

[17] L. Van Der Maaten, “Learning a parametric embedding by preserving
local structure,” in Artificial Intelligence and Statistics, 2009, pp. 384–
391.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] A. Akalin, Computational Genomics with R. CRC Press, 2020.
[20] C. E. Shannon, “A mathematical theory of communication,” ACM

SIGMOBILE mobile computing and communications review, vol. 5,
no. 1, pp. 3–55, 2001.

[21] M. Li and I. K. Sethi, “Confidence-based active learning,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 28, no. 8,
pp. 1251–1261, 2006.

[22] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data,” 2001.

[23] A. Culotta and A. McCallum, “Reducing labeling effort for structured
prediction tasks,” in AAAI, vol. 5, 2005, pp. 746–751.

[24] G. Schohn and D. Cohn, “Less is more: Active learning with support
vector machines,” in ICML, Citeseer, vol. 2, 2000, p. 6.

[25] A. Singhal et al., “Modern information retrieval: A brief overview,”
IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35–43, 2001.

[26] K. L. Elmore and M. B. Richman, “Euclidean distance as a similarity
metric for principal component analysis,” Monthly weather review,
vol. 129, no. 3, pp. 540–549, 2001.

[27] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

[28] M. Ducoffe and F. Precioso, “Adversarial active learning for deep net-
works: A margin based approach,” arXiv preprint arXiv:1802.09841,
2018.

[29] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[30] B. Settles, M. Craven, and S. Ray, “Multiple-instance active learning,”
Advances in neural information processing systems, vol. 20, pp. 1289–
1296, 2007.

[31] H. S. Seung, M. Opper, and H. Sompolinsky, “Query by commit-
tee,” in Proceedings of the fifth annual workshop on Computational
learning theory, 1992, pp. 287–294.

[32] A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proceedings of the eleventh annual conference
on Computational learning theory, 1998, pp. 92–100.

[33] Y. Zhou and S. Goldman, “Democratic co-learning,” in 16th IEEE
International Conference on Tools with Artificial Intelligence, IEEE,
2004, pp. 594–602.

[34] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the
nips 2003 feature selection challenge,” Advances in neural information
processing systems, vol. 17, pp. 545–552, 2004.

[35] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O.
Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton,
J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for
machine learning software: Experiences from the scikit-learn project,”
in ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, 2013, pp. 108–122.

[36] S. Dasgupta, “Analysis of a greedy active learning strategy,” Advances
in neural information processing systems, vol. 17, pp. 337–344, 2005.

[37] X. Zhu, J. Lafferty, and Z. Ghahramani, “Combining active learning
and semi-supervised learning using gaussian fields and harmonic
functions,” in ICML 2003 workshop on the continuum from labeled to
unlabeled data in machine learning and data mining, vol. 3, 2003.

[38] Y. Leng, X. Xu, and G. Qi, “Combining active learning and semi-
supervised learning to construct svm classifier,” Knowledge-Based
Systems, vol. 44, pp. 121–131, 2013.

[39] M. F. A. Hady and F. Schwenker, “Combining committee-based semi-
supervised learning and active learning,” Journal of Computer Science
and Technology, vol. 25, no. 4, pp. 681–698, 2010.

[40] A. Oliver, A. Odena, C. Raffel, E. D. Cubuk, and I. J. Goodfellow,
“Realistic evaluation of semi-supervised learning algorithms.,” in ICLR
(Workshop), 2018.

[41] J. Bergstra, D. Yamins, D. D. Cox, et al., “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,”
in Proceedings of the 12th Python in science conference, Citeseer,
vol. 13, 2013, p. 20.

[42] R. Fisher, Iris flower dataset, 1936.
[43] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling

wine preferences by data mining from physicochemical properties,”
Decision support systems, vol. 47, no. 4, pp. 547–553, 2009.

[44] T. R. Shultz, D. Mareschal, and W. C. Schmidt, “Modeling cognitive
development on balance scale phenomena,” Machine learning, vol. 16,
no. 1, pp. 57–86, 1994.

https://doi.org/10.1145/1968613.1968619
https://doi.org/10.1145/1968613.1968619

Learning To Learn: A Dual Network Approach To Active Learning

[45] M. Bohanec and V. Rajkovic, “Knowledge acquisition and explanation
for multi-attribute decision making,” in 8th Intl Workshop on Expert
Systems and their Applications, 1988, pp. 59–78.

[46] J. Schlimmer, “Mushroom records drawn from the audubon society
field guide to north american mushrooms,” GH Lincoff (Pres), New
York, 1981.

[47] F. Alimoglu, E. Alpaydin, and Y. Denizhan, “Combining multiple
classifiers for pen-based handwritten digit recognition,” 1996.

[48] R. Detrano, A. Janosi, W. Steinbrunn, M. Pfisterer, J.-J. Schmid, S.
Sandhu, K. H. Guppy, S. Lee, and V. Froelicher, “International appli-
cation of a new probability algorithm for the diagnosis of coronary
artery disease,” The American journal of cardiology, vol. 64, no. 5,
pp. 304–310, 1989.

[49] C. J. Tucker, D. M. Grant, and J. D. Dykstra, “Nasa’s global orthorec-
tified landsat data set,” Photogrammetric Engineering & Remote Sens-
ing, vol. 70, no. 3, pp. 313–322, 2004.

[50] I. W. Evett and E. J. Spiehler, “Rule induction in forensic science,” in
Knowledge Based Systems, 1989, pp. 152–160.

[51] D. Dua and C. Graff, UCI machine learning repository, 2017.
[52] D. H. Deterding, “Speaker normalisation for automatic speech recog-

nition.,” Ph.D. dissertation, University of Cambridge, 1990.
[53] G. Demiroz, H. Govenir, and N. Ilter, “Learning differential diagno-

sis of eryhemato-squamous diseases using voting feature intervals,”
Artificial Intelligence in Medicine, vol. 13, no. 3, pp. 147–165, 1998.

[54] S. Khanna, X. Liu, and J. Zhang, Iot device identification on corporate
networks via adaptive feature set to balance computational complexity
and model bias, U.S. Patent 17139398, Sept. 2020.

[55] Y. Yang and M. Loog, “A variance maximization criterion for active
learning,” Pattern Recognition, vol. 78, pp. 358–370, 2018.

[56] J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in large
margin classifiers, vol. 10, no. 3, pp. 61–74, 1999.

