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Abstract   
Harmful   use   of   alcohol   is   responsible   for   5.1%   of   the   global   burden   of   disease.    Recent   work   aimed   at   promoting   
healthier   drinking   habits   has   shown   promise   for   the   effectiveness   of   just-in-time   adaptive   interventions   delivered   on   
mobile   phones   just   before   the   onset   of   heavy   drinking   episodes.    This   project   used    only   non-sensitive   accelerometer   
data   collected   from   mobile   phones,   examined   different   deep   learning   architectures   and   developed   a   reliable   classifier   
which   detected   periods   of   heavy   drinking   with   96.2%   accuracy.     

1   Introduction   
Harmful   use   of   alcohol   is   responsible   for   5.1%   of   the   global   burden   of   disease.    [1] .    Thus,   social   workers   have   
studied   how   to   reduce   heavy   drinking   habits   through   interventions   such   as   education   programs   and   motivational   
feedback,   and   social   media   campaigns,   etc.   
With   smartphones   becoming   so   popular   in   today's   society,   nearly   everyone   owns   one   because   of   the   convenience   
and   the   wide   range   of   functions   they   offer.   Thus   r esearchers   have   begun   to   investigate   the   effectiveness   of   mobile   
interventions.   
However,   a   recent   study   which   delivered   hourly   mobile   interventions   to   participants   during   drinking   events   showed   
no   significant   reduction   in   the   amount   of   alcohol   consumed    [2] ,   suggesting   that   overly   frequent   messaging   can   reduce   
the   effectiveness   of   interventions.   This   highlights   the   need   for   accurate,   targeted   messages   to   participants   during   
drinking   episodes .[3]     
  

Raw   accelerometer   data   are   not   sensitive   and   thus   will   be   much   easier   to   be   adopted   compared   to   sensitive   location,   
calls,   keystrokes   which   may   raise   privacy   concerns.   
  

For   this   project   I   explored   4   state   of   the   art   deep   learning   architectures,   including   a   baseline   neuron   network,   a   
Convolutional   Neural   Network   (CNN),   a   Long   Short   Term   Memory   (LSTM)   and   a   CNN-LSTM,   to   detect   the   heavy   
drinking   episode   using   mobile   accelerometer   data.    I   also   examined   various   hyperparameters   and   analyzed   impacts   
on   model   performance.    The   best   model   detected   heavy   drinking   with   96.2%   accuracy.   

2   Related   Work   
This   project   used   the   open   source   data:   Bar   Crawl:   Detecting   Heavy   Drinking   Data   Set   in   UCI   Machine   Learning   
Repository. [6]     The   dataset   was   first   used   by   Jackson   A   Killian   et   al   in   their   paper   Learning   to   Detect   Heavy   Drinking   
Episodes   Using   Smartphone   Accelerometer   Data.    [3]     It   extracted   features   from   both   the   time   domain   as   well   as   
doing   Fast   Fourier   Transform   to   get   the   frequency   domain   features   such   as    spectral_centroid,   spectral_spread,   
spectral_rolloff,   avg_power,   etc.   Then   these   features   were   fed   to   train   4   different   classifiers,    Multilayer   Perceptron   
Network   (MLP)   ,   an   SVM   with   a   radial   basis   function,   using   LIBSVM,   a   random   forest,   and   a   convolutional   neural   
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network   (CNN).    Random   Forest   wins   among   the   classifiers   with   a   77.5%   accuracy.   However,   deep   learning   
networks   were   yet   explored   meaningfully   in   the   paper.     
  

Matteo   Gadaleta   et   al   use   CNN   on   accelerometer   and   gyroscope   (inertial)   signals   in   their   paper   IDNet:   
Smartphone-based   Gait   Recognition   with   Convolutional   Neural   Networks [4] .    After   a   bunch   of   feature   engineering   
like   transforming   the   accelerometer   and   gyroscope   to   orientation   independent   reference,   CNN   was   then   used   for   
automatic   feature   extraction   followed   by   a   SVM   layer   for   final   classification.     
  

Ming   Zeng,   et   al   in   their   2014   paper   “Convolutional   Neural   Networks   for   Human   Activity   Recognition   using   
Mobile   Sensors [5] .   use   CNN   model   for   accelerometer   data,   where   each   axis   of   the   accelerometer   data   is   fed   into   
separate   convolutional   layers,   pooling   layers,   then   concatenated   before   being   interpreted   by   hidden   fully   connected   
layers.   

3   Dataset   and   Features   
I   used   the   open   source   data:   Bar   Crawl:   Detecting   Heavy   Drinking   Data   Set   in   UCI   Machine   Learning   Repository. [6]   

The   data   has   14057567   instances,   collected   from   13   participants.   Accelerometer   data   were   collected   from   a   mix   of   
11   iPhones   and   2   Android   phones,   including    5   columns:   a   timestamp,   a   participant   ID,   and   a   sample   from   each   axis   
of   the   accelerometer.    TAC   data   was   collected   using   SCRAM   ankle   bracelets   and   was   collected   at   30   minute   
intervals.     
  

There   are   two   parts   in   the   raw   dataset,   TAC   reading,   from   which   the   label   is   extracted   from   and   the   accelerometer   
data,   which   has   four   columns,   time   stamps,   x,   y   and   z   accelerometer   readings.   
For   TAC   reading,   the   label   is   extracted   as   1   when   the   reading   is   equal   or   larger   than   the   preset   threshold   (indicating   
a   heavy   drinking   episode)   and   0   otherwise.   I   use   0.08   as   the   threshold.   
For   the   accelerometer   readings,   instead   of   doing   complex   feature   engineering   to   extract   frequency   domain   features,   
I   used   merely   the   plain   accelerometer   data   in   the   x,y,z   axis.    Its   timestamp   is   recorded   at   millisecond   while   each   
second   may   have   a   various   number   of   readings.   So   to   make   all   seconds   have   the   same   number   of   instances,   20   
readings   were   sampled   from   each   second.     e.g.    readings   at   second   T   are   [x T ,   y T ,   z T ]   a   20   X   3   matrix.   
On   the   other   hand,   whether   there's   heavy   drinking   at   second   T,   is   highly   correlated   to   those   most   recent   
accelerometer   readings,   so   I   created   an   overlapping   sliding   window   view   for   every   10   seconds.    More   specifically,   
the   total   features   for   second   T   are     
  [x T-9 ,   y T-9 ,   z T-9   
  x T-8 ,   y T-8 ,   z T-8   
  ...   
  x T ,   y T ,   z T ],    a   200   X   3   matrix.     
The   dimension   of   the   final   input   is   30726   X   200   X   3.     Note   that    y=1   accounts   for   63.5%   of   the   total   population,   
which   serves   as   the   random   guess   accuracy.   
  

Below   is   a   glimpse   of   two   samples   of   the   200X3   features   with   y   being   1   and   0   respectively.   
  
  



  

4   Method   

I   explored   4   different   deep   learning   architectures,   including   a   baseline   neuron   network,   a   Convolutional   Neural   
Network   (CNN),   a   Long   Short   Term   Memory   (LSTM)   Recurrent   Neural   Network   (RNN)   and   a   CNN-LSTM   to   
solve   the   problem.   
  

Baseline   Neuron   Network:   
200X3   inputs   were   flattened   before   feeding   into   three   hidden   layers,   with   32,32,16   hidden   units   respectively.    i.e.     

    
  

Convolutional   Neural   Network:   

200X3   inputs   were   fed   into   two   consecutive   Conv1D   layers,   followed   by   a   dropout   layer,   a   max   pooling   layer   as   
well   as   a   fully   connected   layer   before   the   final   output.   

  
Long   Short   Term   Memory   

200X3   inputs   were   fed   into   a   LSTM   layer,   followed   by   a   dropout   layer   and   a   fully   connected   layer   before   the   final   
output   

  
  



  

CNN-LSTM   

200X3   inputs   were   reshaped   to   fit   in   time   distributed   and   then   fed   into   two   consecutive   Conv1D   layers,   followed   by   
a   dropout   layer,   a   max   pooling   layer,   the   output   of   which   is   then   fed   to   the   following   LSTM   layer,   followed   by   a   
dropout   layer   and   fully   connected   layer   before   the   final   output.   

  
  

  
  

5   Experiments   and   Results   
For   the   baseline   model,   I   used   three   hidden   layers,    with   32   nodes,   RELU,    32   nodes,   RELU    and   16   nodes   RELU   
respectively.   The   output   layer   uses   sigmoid   activation.    I   use   the   binary   cross   entropy   as   the   loss   function   and   Adam   
as   the   optimizer.     
With   epoch=50   and   batch_size=32,   it   gives   a   model   with   accuracy   of   66%   on   the   test   data   set,   which   is   similar   to   the   
random   guess   accuracy   as   y=1   accounts   for   63.5%   of   the   population.   The   training   accuracy   was   above   80%,   which   
indicates   an   obvious   high   bias.   Thus   we   need   a   more   advanced   network   to   extract   the   collelations   from   the   x,y,z   
axis..     
  

For   the   CNN   models,    I   started   with   two   consecutive   Conv1D   layers,   each   with   64   filters   and   filter   size   3,   followed   
by    a   dropout   layer   (p=0.5)   and   max   pooling   (pool_size=2),   and   then   a   fully   connected   layer   with   128   features   
before   the   final   output.    It   got   an   accurary   87.5%   on   the   test   set.    Tuning   the   filter   size    to   10   further   pushed   the   
accuracy   to   96.2%   which   is   the   best   model   for   this   project.    Then   I   removed   the   dropout   layer,   the   training   accuracy   
increased   a   bit   while   the   accuracy   on   the   test   set   dropped   from   96.2%   to   94.9%   which   indicated   a   slight   overfitting   
without   dropout   and   thus   the   regulation   added   by   the   dropout   layer   is   very   helpful   in   this   case.   I   also   tried   increasing   
filter   size   from   64   to   128   as   well   as   increasing   hidden   units   number   from   128   to   256   for   the   last   fully   connected   
layers,   both   of   which   showed   signs   of   sligh   overfitting   and   failed   to   improve   the   model   performance.     
  

For   the   LSTM   model,   I   used   an   LSTM   layer   with   128   units,   as   well   as   a   dropout   layer   (p=0.5)   and   a   fully   connected   
layer   with   128   units   .   It   got   an   accuracy   of   70.7%   which   is   much   worse   than   the   CNN   model.   I   think   this   is   because   
the   prediction   task   is   to   predict   drinking   episodes   and   thus   the   accelerometers   in   the   past   10   seconds   all   weigh   
equally,   i.e.   any   inharmonious   pattern   in   the   10   second   window   may   indicate   a   heavy   drinking   episode.   Therefore   
CNN   does   a   better   job   than   LSTM   on   extracting   efficient   features,   the   latter   of   which   weigh   the   last   row   more   than   
the   early   rows   and   therefore   may   ignore   signals   in   early   seconds.   
  

Forr   CNN+LSTM,   I    combined   the   previous   CNN   layers   and   LSTM   layers   by   encapsulating   the   CNN   layers   with   
TimeDistributed.    This   approach   basically   used   CNN   to   extract   features   (the   very   last   max   pooling   layer)   which   then   
served   as   the   input   to   the   following   LSTM.    When   the   input   was   reshaped   to   4X50X3,   it   got   an   accuracy   of   93.1%,   
while   the   accuracy   dropped   to   92.3%   with   a   10X20X3   input.    The   result   was   acceptable   but   worse   than   the   best   



  

CNN   model   which   had   a   96.2%   accuracy.   It   tells   that   the   128   features   extracted   from   CNN   from   the   sliding   window   
have   very   accurate   characteristics   of   the   drinking   episode   and   adding   a   LSTM   do   not   add   much   value   there.   
  

Below   is   the   ROC   curve   graph   of   all   the   above   models.    It   shows   that   the   above   best   CNN   model   stands   out.   i.e.   the   
best   model   is   the   one   used   two    consecutive   Conv1D   layers,   each   with   64   filters   and   filter   size   10,   followed   by    a   
dropout   layer   (p=0.5)   and   max   pooling   (pool_size=2),   and   then   a   fully   connected   layer   with   128   features   before   the   
final   output   

  
  
  
  
  
  

  

  

6   Conclusion   
I   explored   4   deep   learning   architectures,including   a   baseline   neuron   network,   a   Convolutional   Neural   Network   
(CNN),   a   Long   Short   Term   Memory   (LSTM)   and   a   CNN-LSTM,   and   examined   with   different   hyperparameters,   
among   which   CNN   got   the   best   result   of   96.2%   accuracy.   The   best   model   used   2   Conv1D   layers   with   64   filters   of   
size   10   followed   by   a   2x2   max   pooling   layer   and   a   128   features   fully   connected   layer   and   a   final   binary   output   layer.   

The   best   CNN   model's   accurary   96.2%   beats   the   77.5%   in   the   original   paper   which   uses   random   forest.   Unlike   the   
previous   related   works   with   complex   feature   engineering   to   extract   features   in   both   time   and   frequency   domain,   I   
used   original   accelerometer   data.     

I   discussed   that    the   reason   that   CNN   stands   out   among   the   four   architure   is   because   the   prediction   task   (detect  
heavy   drinking   episode)   is   highly   related   to   any   inharmonious   pattern   detected   in   a   10second   clip   of   accelerometer   
data.   CNN   does   the   good   job   of   extracting   features   from   the   x,y,z   correlations   with   equal   weight   in   that   sliding   
window.   LSTM   on   the   other   hand   weighs   more   on   the   last   input   and   thus   may   overlook   the   signals   in   early   time   in   
the   10   second   clip.   

With   such   great   accuracy,   it's   very   promising   that   we   can   put   the   model   in   real   use   to   help   people   living   a   safer   and   
healthier   life.   

Moreover,   the   experiments   and   comparisons   done   in   this   project   can   also   be   helpful   on   similar   binary   classification.   
i.e.   CNN   should   do   well   on   classifications   on   inharmonious   patterns   using   pure   accelerometer   data.   E.g.   to   alert   DUI   
drivers,   etc.     
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