
 1 

 
 

Deep-Learning Assisted Compact Modeling of Nanoscale Transistor 

 

Hei Kam 
Stanford University 

heikam2112@gmail.com 

Abstract 

Transistors are the basic building blocks for all electronics. Accurate prediction of their current-voltage (IV) 
characteristics enables circuit simulations before the expensive silicon tape-out. In this work, we propose 
using deep neural network to improve the accuracy for the conventional, physics-based compact model for 
nanoscale transistors. Physics-driven requirements on the neural network are discussed. Using finite element 
simulation as the input dataset, together with a neural network with roughly 30 neurons, the final IV model 
can well-predict the IV to within 1%. This modelling methodologies can be extended for other transistor 
properties such as capacitance-voltage (CV) characteristics, and the trained model can readily be 
implemented by the hardware description language (HDL) such as VerilogA for circuit simulation.  

1. Introduction 
Transistors are four-terminal switches that form the basic building blocks for all electronics. Over the past 50 

years, transistor scaling driven by the Moore’s Law has led to tremendous improvement in integrated circuit 
performance. A significant part of this was enabled by physics-based transistor model which allows for efficient 
circuit design and simulation (Fig.1).  

Transistor current-voltage (IV) models are a set of equations that predicts the drain-to-source current IDS based 
upon the input gate/source/drain voltages (VG, VS, VD) (Fig. 2). These models were traditionally derived based 
upon physics, but close-form solutions that accounts for nanoscale effects are either mathematically complicated 
or do not exist. In this work, we propose using neural network for accuracy improvement. Such neural network 
can easily be extended for other device parameters and implemented in hardware description language such as 
VerilogA for very large-scale integration (VLSI) circuit design and simulation. 
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2. Related Work 
We begin our discussion with the Enz-Krummenacger-Vittoz (EKV) Core IV Model1 [1], in which IDS for an 

ideal long-channel transistor can be modeled by 4 device parameters (P, VSS, VT, β)2: 

𝐼!",$(𝑉%", 𝑉%!) ≈ 𝑃(𝜙(𝑉%")& − 𝜙(𝑉%!)&+  ,  𝜙(𝑉%') = 𝑉((𝑙𝑜𝑔 01 + 𝑒𝑥𝑝 6
)!"*)#
)$$

78   (1) 3 

where P is the prefactor that is set by the device dimension and mobility, subscript X denotes source (S) or drain 
(D). VSS is related to the thermal voltage, VT is the threshold voltage, and β = 2. 

We first compare the core IV model against the IV characteristics simulated by finite element method (Fig.3-
4) using commercially available Poisson-drift-diffusion solver. Device parameters are tabulated in Table I. As 
shown in Fig. 4, this simple model well-matches to device at low VDS; but its accuracy decreases at high voltage 
biases. In conventional approach, analytical models that account for non-idealities such as series resistance, drain-
induced barrier lowering (DIBL), channel length modulation [1] are added to improve the accuracy. However, 
many of these models involve solving nonlinear differential equation, and close-form solutions do not exist. By 
sacrificing some degree of accuracy, empirical models with fitting parameters are commonly used. Recently, pure 
look-up-table [4] or deep-learning based transistor models [5-10] have been proposed, in which the measured IV 
data were tabulated or used to train the model. As will be discussed in the next section, this approach can 
potentially result in non-physical behavior and violate fundamental law of physics. 

3. Physics-driven Requirements for the Transistor Model  

The approach we propose herein combines the advantages of both physics-based and deep-learning-based 
modeling strategies. To this end, we introduce a bias-dependent correction function ε(VGS,VGD) to account for the 
non-idealities: 

𝐼!"(𝑉%! , 𝑉%") = 𝐼!",$(𝑉%", 𝑉%!) × 𝜀(𝑉%", 𝑉%!) = 		𝑃(𝜙(𝑉%")& − 𝜙(𝑉%!)&+ × 𝜀(𝑉%", 𝑉%!)    (2) 

in which ε is to be trained by the neural network. Before doing so, we first discuss the physics-driven requirements 
for IDS and ε.  

 
1 Note that the EKV model is used as an example. Other transistor models such as BSIM-MG [2] or PSP [3] model can also be used.  
2  Source-drain current IDS is set by gate/drain/source voltages and can be expressed as a function of (VGS,VDS) or (VGS,VGD). We will use 
them interchangeably in this work. VXY=VX-VY is the voltage drop across node X and Y, which can be gate G, drain D or source S. 
3 Fun fact: First derivative of function f(x)=log(1+exp(x)) is the sigmoid function, and it resembles the ReLU function without the 
gradient discontinuity at x=0.  
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According to the Ohm’s Law, IDS must be zero when VDS=0. Many deep-learning-based transistor models fail 
to predict so and violate the Ohm’s Law [8-10]. The advantage of using the Eq. (2) is that IDS,m is always zero at 
VDS=0 and it therefore satisfies the requirement. 

Furthermore, since transistors are symmetric devices, the direction of the current flow change if we swap the 
source and drain voltage, i.e. 𝐼!"(𝑉%", 𝑉%!) = −𝐼!"(𝑉%! , 𝑉%"). Substituting this condition into (2), we get: 

𝑃(𝜙(𝑉")& − 𝜙(𝑉!)&+ × 𝜀(𝑉%! , 𝑉%") = −𝑃(𝜙(𝑉!)& − 𝜙(𝑉")&+ × 𝜀(𝑉%", 𝑉%!)  

i.e. the correction function must be symmetric:  

𝜀(𝑉%! , 𝑉%") = 𝜀(𝑉%", 𝑉%!)           (3) 

This condition can be satisfied if we preprocess input (VGS,VGD) using the following transformation T (Fig. 5): 

𝑇(𝑉%", 𝑉%!) = (𝑉%" + 𝑉%! , (𝑉%" − 𝑉%!)+) = (𝑉%" + 𝑉%! , 𝑉!"+ )        (4) 

To prove that T a is symmetric, we swap the source and drain voltages in Eq. (4),  i.e. 𝑇(𝑉%! , 𝑉%") =
(𝑉%! + 𝑉%", 𝑉"!+ ) = (𝑉%" + 𝑉%! , 𝑉!"+ ) = 𝑇(𝑉%", 𝑉%!). Therefore condition (3) is satisfied.  

Finally, IDS must be infinitely differentiable with respect to VGS and VDS. As a result, the correction function 
and therefore, the activation function must be infinitely differentiable. In addition, analog circuit applications also 
require accurate prediction for both the transconductance (dIDS/dVGS) and the output conductance (dIDS/dVDS). 
With these requirements, we will discuss the input dataset and choice of network architecture in the next section. 

 

4. Dataset and Feature 

Ideally, we prefer to use the measured data from the silicon foundry as the dataset. For the purpose of this 
project, it suffices to use the finite element method to generate the IV data. Fig 2 shows the simulated transistor 
structure based upon Intel 14nm FinFET 4  transistor technology 5  [11]. Semiconductor models such as 
concentration dependent mobility, parallel field mobility and Shockley-Read- Hall (SRH) recombination are 
included. Quantum tunneling model for gate leakage current is ignored. As shown in Fig.3, A dataset of (VGS, 
VDS, IDS) point with VGS range from -0.5 to 1V and VDS ranges from 1mV to 1V is simulated. Since the VGS and 
VDS ranges are similar, they are not normalized. By definition, ε is the normalized IDS: 

 
4 FinFET stands for Fin-type field-effect transistor, a self-aligned double-gate transistor that has been in mass production since 2011. 
5 Note that technology node name (e.g. “14nm”) used to represent the critical feature size of a transistor. In recent years, however, it has 
become a marketing term and no longer has physical meaning. Physical gate length L for recent transistor is roughly 20-25nm. 
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𝜀(𝑉%", 𝑉%!) ≡
,%&()!%,)!&)
,%&,(()!%,)!&)

= ,%&()!%,)!&)
/01()&))*1()%))2

  

∂ɛ/∂VG and ∂ɛ/∂VD are also computed from the data using the finite difference method. The dataset (VGS, VGD, 
IDS, ε, ∂ɛ/∂VG, ∂ɛ/∂VD) will be used as the input data to train the neural network. 

5. Methods 

Fig. 5 shows the architecture for the 3-layer neural network together with the aforementioned transformation 
T. Hyperbolic tangent function tanh is used as the activation function for the input and hidden layers due to its 
infinite differentiability. The cost function J is the mean square error: 

𝐽 = 3
$
∑ @A𝜀(4) − 𝜀′(4)C+ + 𝜂% 6

56(+)

5)!
− 567(+)

5)!
7
+
+ 𝜂! 6

56(+)

5)%
− 567(+)

5)%
7
+
E$

483    (5) 

where m is the sample size, first to third terms correspond to the cost in IDS, transconductance (~∂ɛ’/∂VG) and 
output conductance (~∂ɛ’/∂VD), respectively. ηG and ηD are scaling factors for the gradient costs and (ηG ,ηD) = 
(0.5,1E-3) is used to strike the right balance between various costs. Detailed derivation for the predicted ɛ (denoted 
as ɛ’), its derivatives ∂ɛ’/∂VG, ∂ɛ’/∂VD and Eq. (5) is included in the Appendix. The 12k training dataset is 
purposely selected to cover the full (VGS, VGD) range of 0 to 0.7V6, with particular focus on low (VDS,VGS) for 
denser sampling at low IDS regime. A larger test set of 56k datapoint with very fine increment of VGS, VGD is used, 
leading to a training-to-test-set ratio of roughly 20/80. TensorFlow with adaptive moment estimation (“Adam”) 
optimization is used for training. Adam optimization is a gradient-descent-based optimization algorithm in which 
the per parameter learning rate is estimated based upon the first and second moments of the gradients [12]. Given 
the small training size of < 20000, a single batch is feed into the neural network. 

 
6. Results and Discussion  

Fig 6. shows cost vs epoch for various network design. As an example, a trained neural network with 2 hidden 
layers of 10 and 20 neurons well predicts the correction function to within 1%, and the deep learning assisted 
model accurately predicted the simulated IV and its derivatives (Fig. 7 and 8). In general, accuracy improves with 
increasing number of neurons, as expected. This tunability allows the circuit designers to make direct tradeoffs 
between model complexity and circuit simulation speed. For example, models with different accuracies can be 
trained, in which the more complex model is selectively used for the few critical transistors in the circuit.  

Also, our discussion thus far focuses only on the EKV model in its simplest form. As technology progresses 
and better transistor models become available, device engineers can update and retrain the correction function 
(using Eq (2)). This can potentially simplify the neural network and reduce the number of model parameters. 

 
6 Supply voltage (VDD) for Intel 14nm technology is 0.7V, which set the voltage range limit.  
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Finally, as evidenced in Fig. 9, our trained model and its higher order derivatives satisfy Gummel symmetry 

tests proposed in [13]. This is unsurprising because ε is symmetric by design, as earlier discussed. 
7. Summary and Future Work 

In this work, a general framework for using deep-learning to assist physics-based transistor modeling is 
proposed. Using a neural network with roughly 30 neurons, the trained model can predict the simulated IV for a 
14nm FinFET technology to within ~1% accuracy. Physics-driven requirements for the neural network are 
discussed and the model satisfies the Gummel symmetry. This modeling framework can be expanded to account 
for other transistor parameters such as temperature, device dimensions and etc. or be used to predict other 
transistor characteristics such as capacitance and gate leakage. The neural network can easily be implemented in 
VerilogA for circuit simulation.  

Finally, the modeling framework discussed in this work is by no means limited to transistors. It can also be 
used to model emerging solid-state devices such as light-emitting-diode (LED) or tunneling based transistors 
(TFET), etc, in which only simple, less accuracy equations are available and detailed physics understanding is 
still in early development. Nevertheless, deep neural network coupled with physics-based model is a very 
intriguing prospect for modeling next generation semiconductor devices. Work in this vein is dawning and the 
possibilities are endless.  
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Appendix. Partial derivative of a Neural Network with respect to input 
As previously alluded to, accurate prediction for the transconductance and output resistance requires good 
approximation for the 1st derivatives.  To achieve this goal, we first note that the output layer 

𝜀 = ∑ 𝑤49𝑎49 + 𝑏49
:-
483            (I.1) 

Differentiate both side with respect to VDS and using chain rule, we get  
56

5)%&
= ∑ 𝑤49

5;+
-

5)%&
:-
483            (I.2) 

following the standard notation introduced in CS230, the output for the ith neuron in the l-th layer is 

𝑎4< = 𝑔A𝑧4<C           (I.3) 

Differentiate both side with respect to VDS and using chain rule, we get  
5;+

.

5)%&
= 𝑔7A𝑧4<C ×

5=+
.

5)%&
          (I.4) 

Finally  

𝑧4< = ∑ A𝑤4<𝑎4<*3C
:.
483 + 𝑏<          (I.5) 

5=+
.

5)%&
= ∑ J𝑤4<

5;+
./0

5)%&
K:.

483           (I.6) 
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And finally, 𝑇(𝑉%", 𝑉%!) = (𝑉%" + 𝑉%! , 𝑉!"+ ) 
5>()!&,)!%)

5)%
= (−1, 2 ∙ 𝑉!")          (I.7) 

∂ɛ/∂VG can be derived in a similar manner. Comparing (I.1), (I.3), (I.5) with (I.2), (I.4), (I.6) together with (I.7). 
we note that the derivative can be computed by the neural network as shown in Fig. A1. Note the similarity 
between such network and the original network shown in Fig. 5. In the derivative network, all the biases are set 
to zero and the same weights from the original network are copied over. The activation function g(x) is replaced 
by an element-wise multiplication of g’(x) in which x is fed from the original network. To compute ∂ɛ/∂VD or 
∂ɛ/∂VG , input (0,-1) or (1,1) is feed into the network respectively. 
 

 
 


