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Abstract

This project set out to learn the a similarity function on JSON host signatures
using an autoencoder to learn embeddings, and k-means to perform clustering on
the latent space. We saw little success recreating the original host clusters after
experimenting with various feature engineering methods and LSTM/Transformer-
based variational autoencoders, achieving a max average cluster match probability
of .004.

1 Introduction

Identifying malicious hosts is a top priority cybersecurity task, critical to understanding and defending
networks against malware. In this paper we investigate methods to exploit structure on the set of
host domains in order to create a notion of similarity among the set of hosts that a piece of malware
has communicated with. Additionally, we hypothesize that this similarity will be embedded in the
services running on a given host. Using these sets of hosts associated with a given piece of malware,
we will apply deep neural networks to generate a similarity function in the services space that will
allow us to identify and remove clusters of hosts.

The main challenge is encoding the structure of a host services signature as input to the neural
network. Due to the inconsistency in fields between the host service signatures, it seems necessary to
reduce some fields to an indicator variable. Additionally, more research is needed to determine a way
to structure the input so that the fields which are shared among all data points can be processed by
the model as natural language. That is to say, a single input to the model would be a vector of strings.

2 Related Work

There have been many applications of deep neural networks to learn a notion of similarity on different
spaces, with applications in generating structured drum patterns, molecular similarity, and image
generation[1][2][3]. However, relatively little has been published on host similarity work in deep
learning; Though analysis of domain names and IP traffic has been done, this is limited in scope
to the information provided by a full host signature.[4] On the other hand, sophisticated metrics
of similarity among hosts has been completed without the tool of neural networks.[5] Specifically,
though this dataset was published in 2018, there are no publicly available papers which explore the
proposed problem of host similarity.

CS230: Deep Learning, Winter 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



3 Dataset

The dataset was obtained from Palo Alto Networks as a part of their paper “Machine Learning in
Cyber-Security - Problems, Challenges and Data Sets "[6]. The raw data consist of 136,430 domain
connections, grouped by SHA256 hash of the malware that connected to them. Each entry contains:

• The domain with which the malware communicated, the number of different “benign" files
communicating with the domain according to Palo Alto Networks threat intelligence

• The number of different malware files communicating with the domain

• The number of different grayware files communicating with the domain (files whose classi-
fication is not clear cut/subjective)

• DNS request type

• Response to the DNS request

Additionally, for each of the 19,776 domains that were included in the list of domain connections,
there is a “host services signature": the list of services opened on the host and the profile of each
service. Our learned clusters of hosts will attempt to match the sets of hosts grouped by malware in
the domain connections list. The host services signature is a JSON object with 20 top level keys (and
nested objects within), some which are not present on all signatures.

Figure 1: Visualizing the connections between malware and hosts in the dataset using Graphia.[7]

3.1 Clustering

Figure 1 shows malware are associated with hosts as a network. Note that there are three major clusters
which correspond to malware interacting with three IP addresses associated with time.windows.com,
each accounting for roughly 20,000 connections. Otherwise, this graph shows the complexity of the
interactions within the dataset; Many malware interact with the same hosts, which can obfuscate
hosts that strongly identify a certain malware.

We generated clusters by iterating through the list of domain connections, creating a running list of
hosts which had corresponded with each malware. This step associated 33,298 unique malware with
a total of 14442 unique signatures, which shows that there was missing data in the list of domain
connections and that many malware interact with common hosts. Figure 8 shows a histogram of the
cluster sizes, showing that the vast majority of malware connect to about 4 hosts.
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4 Methods

4.1 Feature Engineering

For baseline input representation of the JSON-encoded host signature, we depth-first flatten the JSON
dictionary into a list of strings, with keys followed by values. Then, we create a corpus based on the
entire dataset and replace each string with its integer id from the corpus. This is then fed into an
embedding layer. This approach results in sequences that have lengths around 500-600 tokens, with a
maximum around 200, and a corpus of size 140,000, since it encodes every string in every signature.

Next, we limit the number of fields from the host signature to just those that are present in all
signatures in the dataset. Additionally, we remove the ’data’ field, since it contributes a lot of
variance to the length of the signatures and the content itself would not be relevant to the clustering
task. This results in a list of 16 keys. This is our simplest representation, which follows the same
regime as above, but with a much smaller feature set. The lengths of the sequences range from 52-58,
with a corpus length of 49081.

Finally, we experiment with a combination of the previous common keys approach with a character-
level VAE in order to compare key’s actual values rather than simply their relative value (whether or
not they match). This results in signatures with length distributed as in figure 5.

4.2 Neural Network

In order to approximate a similarity function on the host signature space, we used a variational
autoencoder (VAE) to send the variable-length strings of tokens to a fixed-size latent space. Within
the variational autoencoder framework, we experimented with both LSTMs and basic Transformer
blocks as encoder/decoder pairs.

The loss function used in the VAE for both architectures was (1), where L denotes the reconstruction
loss and KL is the KL divergence, a measure of difference between two probability distributions,
summed over each dimension j of the embedding space.

L(x, x̂) +
∑
j

KL (qj(z|x)||p(z)) (1)

The first architecture used bidirectional Long Short-Term Memory networks for encoding and
decoding within the VAE [8]. This model had a variable number of parameters due to the embedding
layer, which generated embeddings from the 0-padded tokenized sequences depending on the size of
the corpus. All LSTM-based models used a 64-dimension embedding space, sampled from length
128 LSTM sequence outputs.

We also experimented with using a transformer block with the common keys, character value encoding
input representation. This model generated length 256 input embeddings for each of the tokens in the
input string according to token and position, which fed into a transformer block with output length
256. Next, global average pooling was applied to generate a sequence of length 256 from which 128
points were sampled for the VAE step.

All models were built using Tensorflow.Keras and trained to convergence using the Adam optimizer,
with a validation split of .1 and batch size of 64.[9][10] The training sequences were padded to the max-
imum sequence length, then shuffled for a train/test split by scikit-learn’s train_test_split()
and pad_sequences().[11].

4.3 Evaluation

In total, 14442 unique signatures were found in the domain links database. The autoencoder was
trained with a 90/10 train/test split, where per-epoch validation was done on a random .1 proportion
of the training data. The test set was thus only predicted on for the purpose of evaluating clusters.

The set of domain connections provides ground truth similarity clusters against which to compare
our clustering results. The premise is that hosts that communicate with the same malware should
have similar host signatures, we should see high probability that that the dev set hosts’ cluster
placements will be similar to their ground truth clusters. Therefore, our evaluation metric is the
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average probability that we will see a related host in the cluster we generate. That is, given that
a host x was placed in a certain cluster, we are interested in proportion of the cluster’s hosts that
communicated with a malware that communicated with x.

To begin, we run the k-means algorithm on the predicted encodings of the training set, setting k to
the number of clusters in the original dataset. To evaluate the performance of the similarity function,
we predict the clusters of hosts in the dev set and compute the previously mentioned metric for each
sample in the dev set, returning the average of these results.

5 Results

Model Avg. Cluster Match Prob. Enc. Params Dec. Params Sec./Epoch

All Keys 0.001 29 6 949 824 66 177 1600
Common Key Strings 0.000 88 3 223 744 66 177 45

Hybrid w/ Char Encoding 0.001 11 90 048 66 177 356
Transformer 0.004 1 668 608 396 289 93

Figure 2: Caption

5.1 Using all strings

Using all the strings in a host signature as input representation produced an average cluster match
probability of .00129, which is likely due to random chance of a host signature falling into the same
cluster as another. Figure 3 shows the latent space of the “all strings" method, which shows seemingly
random assignment to clusters. Since the corpus was of size 107301, a much larger model would
likely have been necessary to encompass this much data, beyond the scope of the allocated resources.

Figure 3: A PCA reduced scatter plot of the latent space, color coded by k-means cluster.

5.2 Common keys only

The common keys with value string input representation achieved the lowest performance out of
the models tested, with average cluster match probability .00088. This could be due to the fact that
the “all strings" method encodes some information about which fields are present, even though it
doesn’t know the meaning of their values. In this case, the host signature fields are all the same and
the model can only gain a notion of similarity if the values match exactly, likely contributing to its
slightly worse performance.

4



5.3 Common keys with character-level encoding

Using a hybrid of reducing the host signature to common keys and encoding the values by character
was the most promising input representation, since it would seem to give the model the most structure
to work off of while still allowing comparison between values (for example, comparing similar
latitude/longitude pairs), but this method too achieved a limited average cluster match probability at
.00111. This may be evidence toward the complexity of the network connections (i.e. the problem
itself), or a need for larger models and more compute to absorb the data.

5.4 Transformer-based VAE with Character-level encoding

Though the transformer-based VAE had many more parameters than the hyrid LSTM-based model
and represents the state-of-the-art, it did not learn, despite hyperparameter tuning. This may represent
a need for an even deeper model, or a bug in the implementation, since this was an unexpected
result. The transformer model displayed robust training time despite the higher number of parameters,
making it promising for future work.

Figure 4: Transformer-based VAE loss plot.

6 Conclusion

Limited by time and compute resources, a larger VAE model might be promising. Additionally,
further pruning of hosts that see a large multiplicity of connections, such as time.windows.com
could remove many connections that do not contribute information to the clustering task.

Another direction that this task could move forward is pivoting to training a discriminator model to
distinguish between hosts, rather than using the autoencoder to organize the latent space. This would
allow incorporating the domain connections information into the training process, e.g. using triplet
loss to decide if two hosts were in the same cluster, could incorporate further information into the
model. Furthermore, this might allow further prediction, on the host or cluster level, of a cluster as
benign, malware, or grayware using the statistics from the domain links file.
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7 Appendix

7.1 Data plots

Figure 5: Distribution of
lengths for common keys with
character-level encoding.

Figure 6: Distribution of
lengths for string-based com-
mon key encoding.

Figure 7: Distribution of
lengths for all strings encod-
ing.

Figure 8: A histogram of the number of hosts associated with a piece of malware.
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