
Final Report CS230

Vu Nguyen
lamanhvu@stanford.edu

Elnaz Ansari
elnazans@stanford.edu

Ben Walker
bwalker0@stanford.edu

Abstract
American Sign Language (ASL) is crucial for communication among the deaf community. However, not
everyone can communicate in sign language. This paper explores techniques for translating intermediate sign
language text to English and German in both PyTorch and TensorFlow.

1 Introduction

Over 10 million Americans have some form of hearing disability (Disability Impacts All of Us Infographic 2020). This impacts
their daily lives and communication with others. Many use ASL to communicate, which unfortunately is not commonly taught to
hearing people. We want to play a role in bridging this gap to provide better experiences for this community by experimenting
with ASL translation. In practice, the signs are usually translated to intermediate texts (called "glosses") which are then translated
into English. A similar process is used in translating German Sign Language to German gloss to German.
In this project, we focus on the gloss translation problem; inputting German or English gloss texts and outputting the translated
sentences. We use a Transformer based model to accomplish this, and explore various data augmentation techniques and model
complexities. Additionally, we democratized the state-of-the-art model from Yin and Read 2020 by porting it from OpenNMT-py
to OpenNMT-tf, and working on optimizing the TF model to TF-lite for IoT and edge device deployment.

2 Related work

While Sign Language Recognition (SLR) is a popular field, Sign Language Translation (SLT) is less well explored due to the
complexity of the translation tasks and lack of available datasets. The first public SLT dataset was released in 2014, and only
contained German gloss.
Existing work efforts mainly focus on an Encoder-Decoder approach. The first relevant study (by N. C. Camgoz et al. 2018)
explores attention-based encoder-decoder networks. The same team later proposed a novel transformer-based architecture that
performs both sign language recognition and translation in an end-to-end manner in Necati Cihan Camgoz et al. 2020. They
injected intermediate gloss supervision using a Connectionist Temporal Classification loss function to make the model treat SLR
and SLT as a single problem. The model simultaneously solves the co-dependant sequence-to-sequence learning problems (Sign
to Gloss, and Gloss to Text) and leads to a significant performance gain. Both of these papers focus on German Glosses.
For the English counterpart, Yin and Read 2020 is the state-of-the-art approach that achieves the highest benchmark BLEU score.
Similar to N. C. Camgoz et al. 2018, this paper also uses a Transformer based architecture with encoder-decoder.
A different approach in Li et al. 2020 further incorporates temporal semantic structures of sign videos to learn discriminative
features. It skips the entire process of translating to gloss, and translates directly from video to text. However, this is beyond our
scope as we want to focus on gloss to text translation.

3 Dataset and Features

We obtained ASLG-PC12 and PHOENIX-Weather 2014T datasets, which contain English and German glosses respectively.
Othman and Jemni 2012 introduced the ASLG-PC12 and N. C. Camgoz et al. 2018 contains the PHOENIX-Weather 2014T
dataset (Table 1). Before training, all input sentences are converted to lower-case.
In addition to changing the text to lower-case, we implemented several data augmentation methods, known as Easy Data
Augmentation (EDA), a simple but effective technique used in many NLP applications to reduce overfitting and achieve more
robust models as shown in Wei and Zou 2019. EDA is a word level data augmentation, and our implementation utilises four
different techniques: synonym replacement, random synonym insertion, random swapping, and random deletion.

https://paperswithcode.com/sota/sign-language-translation-on-aslg-pc12-1


For English, we used the Wordnet dataset from Miller 1995 to randomly replace gloss words with available synonyms, which
are selected randomly from a geometric distribution (p=0.5). We incorporated a similar method to insert synonyms for random
words. Random swapping is achieved by randomly selecting 10% of the words in a sentence and swapping their positions, while
random deletion is the same except that the words are deleted instead. For all of these techniques four additional modified
sentences are generated for each original, as seen in Wei and Zou 2019. In addition, we explored the idea of concatenating
several lines of glosses and their respective target lines in order to generate a new train dataset with longer sentences. After
generating the longer glosses/sentences we applied the EDA to the new dataset. We could achieve BLEU score of 70 for the
English model with all these techniques applied.

Dataset ASLG-PC12 PHOENIX-Weather 2014T
Train 82,710 7,096

Validation 4,000 519
Test 1,000 642

Table 1: Breakdown statistics of each dataset.

Due to limited German language understanding of the team, we did not have access to a comprehensive German thesaurus and
only tried the random deletion and random swapping techniques, with the same parameters as with the English.

4 Methods

Our model is based on the same Transformer architecture in Vaswani et al. 2017 and Yin and Read 2020. We pass processed
sentences into the Encoder, where each input word is turned into an embedding of size 512. Each word position is encoded, with
dropout of of 0.1. We have 2 layers in each Encoder and Decoder component. We use the same number of layers described in Yin
and Read 2020 instead of the 6 used in Vaswani et al. 2017. However, we did confirm that an increased number of layers don’t
seem to have an impact on BLEU score. Within each layer, we have a Multi-headed Attention layer followed by LayerNorm, a
Feedforward layer, and another LayerNorm. For the Feedforward layer, we use softmax loss. See appendix 7.1 for a simplified
model architecture overview.
The model in Yin and Read 2020 uses a PyTorch implementation with the OpenNMT-py framework, and the code for this is
provided by the authors. In order to add flexibility, we have ported this model to TensorFlow (OpenNMT-tf). This framework has
more configurability, partly as a result of it being more mature.
Aligning with our hope to democratize this model even more, we quantized the TensorFlow model to reduce its footprint. The
resulting model could be deployed in environment with scarce resources like IoT or mobile devices. We leveraged Ctranslate2
project to perform quantization of the model into the supported Float16, Int16, and Int8 options, where we trade off size with
performance. These quantized models then translate on the same test set to obtain a BLEU score for comparison.

5 Experiments/Results/Discussion

5.1 Metrics

For our evaluation, we rely mainly on BLEU Score as a metric. BLEU is a machine translation standard and is believed to
correlate well with human judgement. We use validation accuracy synonymously with BLEU score, and a higher score is better.
Exported model size is also important, as too large a model cannot be efficiently used in resource constrained environments like
IoT devices.

5.2 Error Analysis Discussion

Figure 1: Example Temporal Clue in Sign Lan-
guage (Baker-Shenk and Cokely 2002).

Our test set errors generally contain: wrong tense or plurality (#2 in Table
2), or wrong word choice (#3 in Table 2). Out of 100 randomly sampled
from mismatched translations, the majority are wrong tense or plurality
(76%), and the rest are wrong word choice (24%) (See Figure 2). This
means we should focus on trying to correct wrong tense or plurality cases
to improve BLEU score. However, an additional question to ask is whether
human can perform better than the current model. Upon examining the
original gloss, we see many vague cases that would be hard for human as
well. For example, for the gloss "X-WE MAKE DEBT AND PASS X-Y ON
TO X-WE CHILD .", our human translation is "We make debt and pass
onto our children", same as the model’s. However, the target text is "We
made debts and passed them on to our children .". When we translate the

2

https://github.com/OpenNMT/CTranslate2
https://github.com/OpenNMT/CTranslate2
https://en.wikipedia.org/wiki/BLEU


76 cases of model’s wrong translations using the original gloss, our human translation matches the wrong model’s translation
65.8%. Therefore, there might be a small room for improvement.
Two major factors contributed to the wrong translation that both human and model make. Firstly, the original gloss usually
contain raw word without verb conjugation. While key words such as "we", "he", "she" can be used for conjugations verbs, the
gloss does not usually contain such clue for past tense. As the above example demonstrates, both present tense and past tense
could be applicable. Secondly, the model appears to use the noun of the sentence to conjugate the verb. However, there are
examples where the nouns themselves are turned into plurals in the target, which then impact the verb conjugation. Both of
these factors make it difficult for the model to correctly translate the input. However, we assert that the translation still makes
sense to an English speaker. As an extra discussion point, there are subjective temporal clues for ASL (see example in Figure 1
for "Recently" and "Very Recently", where the level of exaggeration indicates how recent an event was). While this could be
captured as part of a end-to-end translation from video to English text, we do not have this captured in our gloss dataset. This
suggests some hints as to why an approach that trains both video-to-gloss and gloss-to-text such as Li et al. 2020 might yield
better results, as it could capture these clues better.

Figure 2: Error Analysis Breakdown.

[Example Translation #1 (Correct)]

• Input: ALLOW X-I TO START BY SAY THAT X-MY GROUP THINK THIS BE DESC-VERY DESC-GOOD REPORT .
• 2-Layers Pred: allow me to start by saying that my group thinks this is a very good report .
• 3-Layers Pred: allow me to start by saying that my group thinks this is a very good report .
• 6-Layers Pred: allow me to start by saying that my group thinks this is a very good report .
• Translation Target: allow me to start by saying that my group thinks this is a very good report .

[Example Translation #2 (Wrong Tense)]

• Input: RESULT SPEAK FOR X-MSELVES .
• 2-Layers Pred: the result spoke for themselves .
• 3-Layers Pred: the result speaks for themselves .
• 6-Layers Pred: the result spoke for themselves .
• Translation Target: the results speak for themselves .

[Example Translation #3 (Wrong word)]

• Input: IN THIS WAR X-WE BE DESC-NOT HOSTAGE BUT COMBATANT .
• 2-Layers Pred: in this war we are not hostage but the robber.
• 3-Layers Pred: in this war we are not hostages but the combatants.
• 6-Layers Pred: in this war we are not hostage but a disproportion.
• Translation Target: in this war we are not hostages but combatants .

Table 2: Example English Gloss and English Translation.

5.3 Beam Search

Beam Width BLEU Score
10 91.86
8 90.41
5 90.42
3 90.34

Table 3: Beam width and BLEU Score.

Investigating errors further, we tried to understand
whether issues stemmed from Beam Search or Model-
ing. We manually exported the constructed sentences
that Beam Search came up with - if the optimal choice
is among the options but not chosen, then the beam
search is at fault. Otherwise, if the optimal choice is
missing, then the models themselves are not learning
the right translation.

3



We printed out the options that Beam Search had to choose from. For a lot of cases, we saw a translation similar to target text.
Therefore, one potential avenue for improvements could be tuning beam width. We experimented with a beam width of 10 and
scaled down as Yang, Huang, and Ma 2018 discussed the phenomenon of the "beam search curse", where translation quality
degrades with beam sizes larger than 5 or 10. Incidentally, this is among the six greatest challenges for NMT described in Koehn
and Knowles 2017. In Yin and Read 2020, a beam width of 5 is deemed as optimal for ASLG dataset. Based on our experiments
(Table 3), beam width 10 is the most optimal.

5.4 Data Augmentation

When testing our data augmentation techniques, we saw a negligible drop in evaluation accuracy for synonym-based techniques
on the English dataset. We believe that while the data augmentation techniques do help us acquire more diverse data, accuracy
is difficult to increase when it is already high at 91%. Unfortunately, random swap and random deletion did not improve the
accuracy for either the English or the German datasets. From table 4, we suspect that random swap and deletion in a dataset with
majority shorter sentences makes it harder for the model to learn.

Number of words in a sentence
Dataset <5 words 5<=x<10 10<=x<15 15<=x<20 20<=x
English 17.9% 48.1% 31.9% 1.73% 0.2%
German 18.9% 53.7% 22.2% 4.2% 0.8%

Table 4: Statistics of word usage (%) in sentences in each train dataset.

5.5 Hyper-parameter tuning

To improve on the cases where the model translates to the wrong word, we also vary the Encoder and Decoder layer sizes in the
Transformer. As we add more layers, the model becomes larger and more complex, without a corresponding accuracy increase
(Figure 3). Analyzing some examples (Table 2) suggests that models with more layers might be overfitting. In Example #2,
models with 2, 3, and 6 layer translations are roughly equivalent, with some plurality and tense differences. However, in the
longer sentence of Example #3 the differences are more apparent. Having 2 layers gave a result much closer to the correct
translation compared to 3, 4, or 6 layers. This is particularly interesting as 6 layers is a common industry suggestion from
Vaswani et al. 2017, which leads to a much larger model without much gain in performance in this case.
One of the theories we had was whether the model was struggling with out-of-vocab words. To test this, we also increased the
vocab size. Eventually, we used 50,000 as vocab size, but realized that the vocab built from the dataset only consisted of 21,000
words. With a bigger set of gloss to build vocab from, the model might be able to perform better. However, we are limited by the
available gloss dataset currently, and building our own is expensive even with sign language expertise in the team.

Figure 3: Comparison of different experimental models

5.6 TensorFlow vs. PyTorch

The similarity in test scores between the PyTorch and TensorFlow implementations indicate that the accuracies of the trained
models are very close. The left most graph in Figure 4 shows that the models train in about the same speed, with PyTorch
reaching a maximum BLEU of 91.8 in 4600 seconds, and TensorFlow reaching a similar BLEU of 91.9 in 4500 seconds. These
models are running on the same AWS instance with no other significant CPU/GPU usage. Looking at the right most graph
in Figure 4, we can see that the TensorFlow model performs slightly "slower" in that it takes more steps to converge than the
PyTorch model, even though it runs those steps faster. The TensorFlow and PyTorch models both use gradient accumulation,
building up the gradient updates for 3 batches of 2048 examples before applying them to the model, resulting in a larger effective

4



batch size of 6144. If we turn this off for the TensorFlow model and update after every batch, we see that it trains significantly
faster while still reaching a similar level of accuracy.

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000

B
LE

U
 S

co
re

Time (s)

PyTorch

TensorFlow Small Batch

TensorFlow

0

1

2

3

4

5

6

7

8

9

10

0 1000 2000 3000 4000 5000

Lo
ss

Time (s)

PyTorch

TensorFlow small batch

TensorFlow

0

10

20

30

40

50

60

70

80

90

100

0 1000 2000 3000 4000 5000 6000

B
LE

U
 S

co
re

Steps

PyTorch

TensorFlow small batch

TensorFlow

Figure 4: Comparison of PyTorch and TensorFlow

5.7 Inference Performance

Model BLEU Score Inference Time (s)
PyTorch 91.4 13.2

TensorFlow 91.86 13.8

Table 5: Inference Time and BLEU Score.

The inference speed between the two models is sim-
ilar, with the PyTorch model running slightly faster.
One significant difference is that when inferring, Ten-
sorFlow re-configures the network and retraces the
model, taking on the order of 10-20 seconds which
significantly adds to the time. If the model is being
served, however, this time is a one-off cost, and so in
a production environment would not have a big impact.

5.8 Quantized Models

Model BLEU Score Model Size (Mb)
Baseline 91.86 536
Float16 81.0 86
Int16 81.0 86
Int8 80.9 44

Table 6: Quantized Models and BLEU Score.

To reduce the size of the model, we explore serial-
ization and computing support weights with reduced
precision: 16-bit floating points, 16-bit integers, and 8-
bit integers. While the model size drops significantly,
it appears that our BLEU score remains high (Table
6). In fact, going from float16 to int16 doesn’t seem
to sacrifice any weights. Once the model is quantized,
it can only be used for inference as it merely trans-
lates the weights into formats that took up less space.
Yet, this work poses an exciting avenue for embed-
ding the model in different environments where the
gloss-to-text translation will become less of a resource
bottlenecks.

6 Conclusion

In conclusion, we think that the model performance is comparable to human translation, making it difficult for hyperparameter
tuning alone to significantly increase BLEU score. We believe that in order to improve this performance more, additional datasets
might be required. Otherwise, an expanded model that trains on both video signals to capture some temporal clue needed for the
translation is necessary.
Another potential route for improving this model is to test how to reduce the number of parameters without sacrificing performance
significantly. We have shown some success with quantization, hinting at the possibility that we could lose some precision but
save tremendous on resource footprint. In such a world where ASL translation should be an integral part of any accessibility
system, having a smaller model that performs decently could change many lives in impactful ways. We hope that any future
work would focus more on this aspects of the project.

5



7 Appendix

7.1 Model Architecture

7.2 Contributions

• Everyone contributed to the project ideation, reports, presentation slides, video, and literature review.
• Vu: Worked on error analysis, hyperparameters tuning for beam search width and layer size, quantization of TensorFlow

models.
• Elnaz: Worked on dataset preparation, Easy Data Augmentation (EDA), concat data augmentation, and final result

analysis for both PyTorch and TensorFlow models (for English as well German datasets).
• Ben: Worked on porting to TensorFlow, training analysis, performance tuning for model training and inference

6



References
[20] Disability Impacts All of Us Infographic. Sept. 2020. URL: https : / / www . cdc . gov / ncbddd /

disabilityandhealth/infographic-disability-impacts-all.html.
[BC02] Charlotte Baker-Shenk and Dennis Cokely. American sign language: a teachers resource text on grammar and

culture. Clerc Books, 2002.
[Cam+18] N. C. Camgoz et al. “Neural Sign Language Translation”. In: 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2018, pp. 7784–7793. DOI: 10.1109/CVPR.2018.00812.
[Cam+20] Necati Cihan Camgoz et al. Sign Language Transformers: Joint End-to-end Sign Language Recognition and

Translation. 2020. arXiv: 2003.13830 [cs.CV].
[KK17] Philipp Koehn and Rebecca Knowles. “Six Challenges for Neural Machine Translation”. In: CoRR abs/1706.03872

(2017). arXiv: 1706.03872. URL: http://arxiv.org/abs/1706.03872.
[Li+20] Dongxu Li et al. TSPNet: Hierarchical Feature Learning via Temporal Semantic Pyramid for Sign Language

Translation. 2020. arXiv: 2010.05468 [cs.CV].
[Mil95] George A. Miller. “WordNet: A Lexical Database for English”. In: Commun. ACM 38.11 (Nov. 1995), pp. 39–41.

ISSN: 0001-0782. DOI: 10.1145/219717.219748. URL: https://doi.org/10.1145/219717.219748.
[OJ12] Achraf Othman and Mohamed Jemni. “English-ASL Gloss Parallel Corpus 2012: ASLG-PC12”. In: May 2012.
[Vas+17] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017). arXiv: 1706.03762. URL:

http://arxiv.org/abs/1706.03762.
[WZ19] Jason Wei and Kai Zou. “EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification

Tasks”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 6382–6388. DOI: 10.18653/v1/D19-1670. URL:
https://www.aclweb.org/anthology/D19-1670.

[YHM18] Yilin Yang, Liang Huang, and Mingbo Ma. “Breaking the Beam Search Curse: A Study of (Re-)Scoring Methods
and Stopping Criteria for Neural Machine Translation”. In: CoRR abs/1808.09582 (2018). arXiv: 1808.09582.
URL: http://arxiv.org/abs/1808.09582.

[YR20] Kayo Yin and Jesse Read. “Better Sign Language Translation with STMC-Transformer”. In: Proceedings of the
28th International Conference on Computational Linguistics. Barcelona, Spain (Online): International Committee
on Computational Linguistics, Dec. 2020, pp. 5975–5989. DOI: 10.18653/v1/2020.coling-main.525. URL:
https://www.aclweb.org/anthology/2020.coling-main.525.

7

https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html
https://doi.org/10.1109/CVPR.2018.00812
https://arxiv.org/abs/2003.13830
https://arxiv.org/abs/1706.03872
http://arxiv.org/abs/1706.03872
https://arxiv.org/abs/2010.05468
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/D19-1670
https://www.aclweb.org/anthology/D19-1670
https://arxiv.org/abs/1808.09582
http://arxiv.org/abs/1808.09582
https://doi.org/10.18653/v1/2020.coling-main.525
https://www.aclweb.org/anthology/2020.coling-main.525

	Introduction
	Related work
	Dataset and Features
	 Methods 
	Experiments/Results/Discussion
	Metrics
	Error Analysis Discussion
	Beam Search
	Data Augmentation
	Hyper-parameter tuning
	TensorFlow vs. PyTorch
	Inference Performance
	Quantized Models

	Conclusion
	Appendix
	Model Architecture
	Contributions


