
Patent Technology Classification and Citation Level
Projection

Hanning Su∗

Melbourne Business School
University of Melbourne
hanning@stanford.edu

Abstract

For various interested parties in the society, it is essential to know the potential
impact of new technologies. This project shows that deep learning on the patent
title + abstraction text can help them to get informed. Training a deep LSTM RNN
model with the large scale datasets I assembled and the word vectors generated
from training the skip-gram model, I achieve an accuracy of 71.4% in telling the
technology class of a patent, and 99% precision and 83% recall scores in identifying
top1% cited patents within five years after latest issuance date of patent in the
training set.

1 Introduction

A patent is a document through which an inventor introduce and claim the inventorship of his or her
creation to the wider world. One (another inventor, business competitor, and stakeholders) could
naturally ask two questions: 1. What kind of technology the inventor is presenting? 2. within its
technology field, is the new work going to have a significant impact? My project aims to give a deep
learning solution to these two important questions.

For the first task, I implemented a multiple layers LSTM RNN model. The model take the a matrix
representation (word vectors stacked vertically) of the concatenation title and abstraction texts of
a given patent as input and give a output through the softmax layer predicting the the most likely
subsection id that will be assigned to the patent. The subsection id identifies the technology area a
patent is contributing to. In total, there are 125 distinct subsection ids in the CPC (Cooperative Patent
Classification) scheme, which the United States Patent and Trademark Office is currenly using.

For the second task, I used the same multiple layers LSTM RNN model architecture. I feed the
title + abstraction matrix representations to the model and the output is a prediction of which of the
following group labels based on the number of citations it will receive in five years: top 1%, top 10%
but short of top 1%, not in the top 10% but cited at least once, and never cited at all. One can think of
labels as short(mid) term citation levels.

2 Related work

In recent years, a growing body of literature is utilizing machine/deep learning techniques to classify
patent. Li et al (2018) built an classifier based on architecture to automatically extract features from
patent text. Shalaby et al (2018) developed an LSTM approach based on fixed hierarchy vectors. Hu

∗Alternative E-mail: suhanning1997@gmail.com

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



et al (2018) proposed an patent keyword extraction algorithm based on the distributed skip-gram
model for patent classification. My project adds to this strand of works by developing RNN classifier
taking skip-gram word vectors as inputs.
In this project, the citation refers to the forward citation i.e. how many other patents cite the focal
patent as prior art. I take the straightforward interpretation that citation measures the its impact in its
technological field (Aristodemou et al, 2018). Past researches have noted that forward citation can
measure patent quality, economic value (Squicciarini et al, 2013), and knowledge spillover (Sharma
and Tripathi, 2017).
For the citation level projection task, the prior works are relatively scarce. Lee et al (2017) used
feed-forward neural network to identify emerging technologies. Lin et al (2018) introduced a CNN
based approach that integrated patent text materials to evaluate patent quality. My rough search
indicates that I could be the first to use LSTM RNN architecture to predict the patent citation level.

3 Dataset and Features

For this project, citation level labels are created as follows.
1. From the patent dataset from PatentView, I extracted all the pairs of id of citing patent and id of
cited patent.
2. I attached the grant date to all of the citing patents and the cited patent. (I created a simple SQLite
database to handle this and next step, due to memory limit.)
3. For each cited patent, I create a new variable (maxdate) by adding 5 years to its grant date.
Eliminate all its citing patents with grant date later than the maxdate. Then, I count all the remaining
citing patents to get a raw within 5 year citation count.
4. I grouped the cited patent by the 3 digits CPC subsection code (technology class) that is listed first
(CPC orders subsection code in decreasing order of importance, here I only take the subsection code
listed first into account). Then I calculated citation count 99 and 90 percentile within each of the
technology class.
5. Finally, those patents with raw count greater that the 99 percentile get labeled as top1%. Those
with count short of top1% but greater than 90%, get a top10% label. Those with count of at least one
but short of 90% percentile get a btm90 (bottom 90) label. Those without within 5 year citation has
the zerocite label.
6. Remove examples without full 5 year window to receive citation.
The labelling of citation level has no fixed rule. Different labeling strategies encapsulate different
information about a given patent. The strategy I implemented mostly capture a patent’s short to
midterm impact within the field it contributes to. It is necessary to mention that my labelling strategy
may not be a good indicator of a patent’s long term impact, since a patent can still receive citation
after 50 years of its issuance date. (Hall et al 2001)
The rest of data processing involve joining the dataset containing CPC subsection ids of patents to
the table containing the title + abstraction text.

Summary of resulting dataset

Citation level dataset: 5159188 examples. (Prepared for the citation level projection task)
Technology class dataset: 6779660 examples. (Prepared for the technology class classification task)
title + abstraction text dataset: 7131735 examples. (Prepared for Skip-gram embedding model
training)

Final processing before training

In deriving the word vectors, I used the entire 7131725 training examples to train the skip-
gram model, ending up with 92652 distinct word vectors.

To speed up the training, citation level dataset is grouped by technology class and 15% of examples
in each group are randomly sampled, and then the resulting subset is further divided randomly into
train (98%) and test set (2%). I also used the remaining 85% of the citation level dataset for further
test. Therefore, in the end, I have a training set of 996609 examples, a small test set of 20339, and a
large tet set of 5762712 examples to further verify the generalizability of the trained model.

2



Since citation level projection task is essentially a task of learning from the past and generalizing into
the future, in order to check how far my model generalize, I divide the original dataset into patents
issued in 2010 and before and those issued after 2010. I used pre-2010 set for training and divide the
post-2010 set based on issuance year so that the performance of the model for each year after 2010
can be evaluated.

Due to time limitation of the project, hyperparameters are mostly at default setting, so I did not create
any development set.

The implementation of the procedure using Keras generator to feed millions of examples into models
involve some further data processing, so it is worth mentioning. A generator is an object that feed the
large dataset in small batches into deep learning models to avoid depletion of RAM. In my project, I
used RNN models, which require feeding texts in matrix form. Therefore, I define my generator such
that it turns the texts from pandas dataframe read from a csv file into matrices. For this conversion
process, I implemented some further data processing: 1. the non-English and non-number characters
and infrequent words are removed. 2. The remaining texts are tokenized, their corresponding word
vectors are extracted from trained skip-gram model, and the vectors are stacked vertically. (for
technology classification, I let the matrix to have maximum 100 rows. Examples with less than 1
tokenized words are removed. For citation level project task, I let the matrix to have maximum 200
rows. Examples with less than 50 tokenized words are removed.) I zero padded (truncated) the
matrix in cases where the number of tokens are less(more) than 100 or 200 respectively.) 3. 100 such
matrices are bundled into a minibatch and fed into and RNN models by the generator. 4. At the end
of each training epoch, the indexes for generating minibatches are shuffled to ensure robustness of
the model.

4 Methods

First I train a skip-gram model with negative sampling to get a mapping of words in all the existing
patent title + abstraction texts to vectors. Basically, for each given context c and target word (a word
within a fixed window of the context word) pairs (positive examples) we pair up the context with
multiple randomly selected words from text corpus (negative examples). We then define a logistic
regression with the task of predicting whether the pair is a context-target pair or not. In mathematical
notation, given any pair of word c and t and y := I(c and t form a positive pair), we model is :

P(y = 1|c, t) = σ(θTt ec)

Using appropriate cost function and gradient descent, we train the model and keep the ec as word
vectors.
I initially tried out CNN and FCN (A form of CNN without fully connected layers). The idea behind
both of those architectures is to treat the input matrix representation of text as a one channel image and
to perform convolution on the "image", and perhaps the learned parameters in the convolution layers
can capture increasingly complex features just like they do in image classification tasks. However, it
turns out that both of the architectures have convergence issues, the cost does not drop after tens of
epochs, so I will not elaborate on them more in this and next section.
I end up implementing a deep RNN using LSTM units. A deep RNN is stacking up multiple many to
many single layer RNN, each of which taking as input the output sequence of layer below, and then
stack on top a many to one single layer RNN outputing to a fully connect layer and then to a softmax
layer giving the final prediction. Such a structure allows inputs with various lengths, avoiding the
potential negative effect of zero paddings. The units in the network LSTM (long short term memroy),
which capable of learning long-term dependencies in the input texts, which may be helpful for my
tasks. The performance evaluation will be based on the confusion matrix M. The row indexes i’s
of M represent the ground true labels and the column indexes j’s the predicted labels. We use the
following definitions of precision and recall:

Precisioni =
Mii∑
j Mji

Recalli =
Mii∑
j Mij

Note that in figure 1 2 3 4, I plot confusion matrices normalized row-wise and column-wise. The
diagonal elements of them are exactly recall and precision scores respectively. Finally, the accuracy
metric is simply the fraction of all the test examples for which our model gives correct prediction.

3



Figure 1 Figure 2

5 Experiments/Results/Discussion

In this project, I first trained the skip-gram model using the hyperparameters setting of Li et al (2018).
A simple evaluation based on cosine similarity shows that similar words are close in the vector space.
(See Apendix A for for examples)
For the technology classification task, the RNN model achieves an accuracy of 71.4% on the small
test set. Then the model is tested on the large test set of over five million examples, it gets an accuracy
of 71.37%, demonstrating remarkable generalizability of our model.
The figure 1 and figure 2 are the confusion matrices generated from the test result on the large test set.
We can see that most bright spots are on the diagonal, demonstrating for most of 125 tech classes,
the model has precision and recall within the range of 0.5 to 0.8. For most of classes, our model can
figure most of the true positives and does not confuse between classes.
Our model perform poorly on underrepresented tech classes, often producing zero positive predictions,
especially those with less than 1000 training examples. (Please see the appendix B for precision
recall scores for all 125 classes).

For the citation level projection task, the RNN model trained on the pre-2010 examples get tested on
5 separate test sets containing patent examples with issuance year of 2011, 2012, 2013, 2014 and
2015 respectively. The resulting accuracy scores are 59%, 57%, 55%, 53%, and 51% respectively,
demonstrating a steady decline of model generalizability as it tries to generalize further into the
future.
One of the most import goals of projecting citation level is to find out the patents that are seminal in
their respective fields. Therefore, we now examine whether our model can pinpoint them. If we look
at diagonals of the confusion matrices in figure 3 and figure 4. Throughout the five testing years, the
only class for which the model maintain both high level of precision and recall is the top1% cited
class. In fact, the performance is extremely steady, showing no sign of decline over the five testing
years. We can thus be confident that the for at least five years into the future, the model can correctly
declare over 80% of all the actual top1% (recall score over 80%) cited patents, and within those that
it identify as top1%, about 99% (precision score over 99%) of them are true positives.
Curiously, the model performs very poorly for the top10% but not top 1% class. One explanation
is that the patents with top impact factor and the rest of patents have substantial difference in title
+ abstraction text, while moderately impactful patents do not differentiate themselves substantially
from those receiving a few to no citations.
Finally, the model can figure most of the bottom 90% cited patents out, but it does not distinguish
them well enough from zero cited patents and top10%.

6 Conclusion/Future Work

The goal of this project is to a patent’s technological field and its relative impactfulness within its
field. I achieved 71% accuracy in the former task and precision/recall score falling between 50% and

4



Figure 3

Figure 4

80% for most classes. For patents with sufficient amount length of title + abstraction text (at least 50
tokens), the model for the second task achieves over 50% accuracy at least 5 years going into the
future and is especially capable of discover the most impactful patents.
For the future work, the existing models have a vast room for hyperparameter tuning so that I can
choose a optimal set of hyperparameters so that the model converge better to the minimum cost.
In addition, given that the questions I want to address are closely related, it is reasonable to construct
a multitasking model performing the two classification tasks simultaneously in the future. The
balancing of weights of the two tasks can be a very interesting question to explore.
The patent citation data has truncation issue, for example, a patent in 2018 does not have a five year
citation count because it is less than 5 years from now. Therefore, currently, to estimate impact of
patent granted in 2021, we can only learn from data up to 2016, which to a certain extent must have
negatively impact the quality of estimation. Devising a way to incorporate more recent data into the
model training is important for the model to be useful in the real world.
Finally, the patent document include far more information (such as claims, descriptions and graphs)
than the title + abstraction task. I would also like to explore methods to incorporate them into patent
classification tasks to get even better performance.

5



7 Contributions

This is project is entirely my own work.

References

Abadi, Martín, et al. "Tensorflow: Large-scale machine learning on heterogeneous distributed systems." arXiv
preprint arXiv:1603.04467 (2016).

Aristodemou, Leonidas, and Frank Tietze. "Citations as a measure of technological impact: A review of forward
citation-based measures." World Patent Information 53 (2018): 39-44.

Hall, Bronwyn H., Adam B. Jaffe, and Manuel Trajtenberg. The NBER patent citation data file: Lessons, insights
and methodological tools. No. w8498. National Bureau of Economic Research, 2001.

Hollet et al. Keras. GitHub. Retrieved from https://github.com/fchollet/keras (2015)

Hu, Jie, et al. "Patent keyword extraction algorithm based on distributed representation for patent classification."
Entropy 20.2 (2018): 104.

Lee, Changyong, et al. "Early identification of emerging technologies: A machine learning approach using
multiple patent indicators." Technological Forecasting and Social Change 127 (2018): 291-303.

Li, Shaobo, et al. "DeepPatent: patent classification with convolutional neural networks and word embedding."
Scientometrics 117.2 (2018): 721-744.

Lin, Hongjie, et al. "Patent quality valuation with deep learning models." International Conference on Database
Systems for Advanced Applications. Springer, Cham, 2018.

Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research
12 (2011): 2825-2830.

Řehůřek, Radim, and Petr Sojka. "Gensim—statistical semantics in python." Retrieved from genism. org (2011).

Squicciarini, Mariagrazia, Hélène Dernis, and Chiara Criscuolo. "Measuring patent quality: Indicators of
technological and economic value." (2013).

Shalaby, Marawan, et al. "An lstm approach to patent classification based on fixed hierarchy vectors." Proceedings
of the 2018 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics,
2018.

Sharma, P., and R. C. Tripathi. "Patent citation: A technique for measuring the knowledge flow of information
and innovation." World Patent Information 51 (2017): 31-42.

6



Appendix A

Demonstrating the similar words have vectors with small Euclidiean distance.

7



Appendix B

Classification report part I

8



Classification report part II

9


	Introduction
	Related work
	Dataset and Features
	 Methods 
	Experiments/Results/Discussion
	Conclusion/Future Work 
	Contributions

