
Learning the Inverse Kinematics of a 6-DOF
Concentric Tube Robot through a Generative

Adversarial Network

Soham Sinha
Stanford University

sohams@stanford.edu

Abstract

Concentric tube robots (CTR’s) are a highly complex robotic system due to a
combination of both joint and transitional spaces as well as having high degrees of
freedom. Due to their advantages in having a small form factor, ability to navigate
in constrained spaces, there is a great need for a robust control system. Analytical
inverse kinematics (IK) offer one such approach, but suffer from numerical prob-
lems and instabilities in its Jacobian. Furthermore, redundancy is not addressed in
such solutions. Neural Networks offer an opportunity to approximate the inverse
kinematics, as well as offer advantages that numerical solution cannot offer. In
particular, we approach inverse kinematics through a simulation intensive method
by bootstrapping the Jacobian to generate data to simulate both the Jacobian and the
forward kinematics with a shallow feed-forward neural network. We then perform
a standard optimisation of the positional error through feedback to solve for IK.
Furthermore, to tackle the issue of redundancy and generate starting configurations,
we explore utilising an ensemble Generative Adversarial Network to generate a
variety of robot configurations such that the end-effector is close to the target point.
By comparing with standard inverse kinematic approaches, from a pure function
approximation from target end poses to robot configuration spaces, to a data-driven
lookup process, we show that our mixture of Jacobian Learning + GAN offer
relatively high accuracy (2.5% of total robot length) as well as low computational
time (1 - 1.5 s/point), a significant improvement over literature values of 10% of
total robot length for neural network based implementations.

1 Introduction

Concentric tube robots (CTR’s) are a class of continuum robotics that are well suited for access into
occlusive spaces whether it be in a minimal surgery setting or manufacturing in a complex mold
(Figure 1) [4, 1]. The robot is constructed from sets of pre-curved superelastic (nickel-titanium
or Nitinol) alloy tubes and are concentrically aligned which allow for rendering of complex 3-
dimensional curves with a small form factor [4]. Achieving precise, accurate, and fast control of
such robots is an ongoing research problem, especially closed-loop control which requires inverse
kinematics of the robot [11, 8, 7].

2 Related Work and Overview of Methodology

Inverse kinematics of robotics has been explored in various forms, from numerical estimation through
IVP and BVP methods, [8, 11], data-driven approaches with interpolation [12], multilayer perceptron

CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Figure 1: This figure shows the 3 possible translations β1, β2, β3 and 3 rotations α1, α2, α3 of a
3-tube CTR for 6 degrees of freedom. In an application setting, the translations are achieved by
stepper motors, and the rotations are by rotary encoders. Taken with no modifications from Grassman
et. al [6]

deep learning with 2 hidden layers[6], numerical control and optimisation [8, 10, 2], to even rewriting
of the parameter space in terms of differing coordinate systems from cylindrical to spherical and
the configuration space in terms of quaternions to boost neural network performance; however, the
results are limited by both accuracy (1̃0% of total length of the robot), redundancy issues (multiple
configurations can lead to the same tip position), hysteresis, and sparse solution sets due to very weak
pseudo-inverse of the Jacobian Matrix. In particular, simulation data has shown to be quite useful
in determining performance of neural networks [3], as it allows for collection of sample points via
Monte Carlo methods.

2.1 Optimisation via MLP Forward Kinematics Approximations

An alternate formulation of Inverse Kinematics is to think of it as an optimisation problem of reducing
the error between the desired path position, and the end tip position of the robot.

In particular, given a set of robotic internal parameters {q1, q2,qm} ∈ Rm, and a set of target
points {p1, p2,pi, pi+1, ...} ∈ Rn, the problem can be reformulated as the following optimisation
problem

qi = argminqO(pi,q) = argminq||pi − p(q)||22 (1)

We can solve the argmin by finding a suitable learning rate α and performing the following update

qi+1 = qi − 2α(pi − p(q)) · dp
dc

(2)

= qi − 2α(pi − p(q)) · J(q) (3)

with J(q) ∈ Rn×m Guoxing Fang et. Al, in late 2020, detail a methodology of approximating the
Jacobian as a neural network to ease up computation for accurate path planning of soft-robotics [5].
Furthermore, from previous results replacing the forward kinematics function p(q), with a neural
network approximation significantly speeds up computation by a factor of 2-10 times [5, 3, 6].

2.2 Generative Adversarial Neural Network for Starting Configurations

However, a key issue still remains in the optimisation procedure outlined above - the generation of
the first configuration to optimise from. Redundancy is a critical issue, as many configurations lead
to the same points. A brute force search algorithm from simulation data can be used to generate a
starting configuration for optimisation; however, it is computationally expensive. Teguh Lembono et.
Al., in late 2020, detail a GAN Framework to generate valid robot configuration space parameters for
a joint-space parametric robots (7-DOF Panda Manipulator and 28-DOF Humanoid Talos robots in
Gym) [9]. A Generative Adversarial Network is a zero-sum game between two neural networks, a
generator which generates ’false’ data and tries to fool a discriminator which decides whether the
generated data comes from the same distribution or not. Hence, a network’s loss is another’s gain. In
particular, they used an ensemble of generators, each trained separately on the same dataset, to give
the various possible configurations.

The difference between a standard GAN for images and this is that besides randomly sampled noise,
a target position is given to the Generator to generate configurations that correspond to the target
position, and some specialised loss functions are used, which are described in more detail in Section
3. The GAN framework is shown in Figure 2.

2

Figure 2: This figure shows GAN framework to generate valid CTR configurations for a specific
target point. The generator consists of an ensemble of Neural networks, while the discriminator
consists of a single neural network. Standard Gaussian noise is the input, as well as the target position.
The output of the generator can be augmented with other constraints before given to the discriminator.
Taken with no modifications from Lembono et. Al. [9].

3 Dataset and Features

A challenge of this project was generating data points from a CTR Robot. Due to some delays with
the physical CTR robot being built in the Skylar-Scott Lab, simulation data approximating the real
3-tube 6-DOF robot was instead utilised. CTR Simulation data was generated using Cosserat Rod
Theory, which has been the standard used in modelling CTR Robots [3, 8, 4]. Furthermore, due to
amount of matrix multiplications involved in the system, and ease of vectorisation MATLAB R2020B
was used to both generate and train neural networks. For more details on the theory, please see work
by Burgner-Kahrs et. Al ([3]) and physical parameters of the tubes (Table 8.1), please see Appendix.

3.1 Concentric Tube Kinematic Constraints

The joint space of the CTR is defined by the following inequalities, with reference to symbols defined
in Figure 1.

αi ∈ [−π, π) (4)
βi ∈ [−Li, 0] (5)

β1 ≤... ≤ βn ≤ 0 (6)
Ln + βn ≤ ... ≤ L1 + β1 (7)

β1 ∈ [−L1, 0], β2 ∈ [−L2, β1], β3 ∈ [−L2, β2] (8)

where i = 1 denotes the innermost tube. A Monte-Carlo approach was taken to sample these
parameters subject to the constraints, and 500,000 data points (s) corresponding to the end-effector
poses of the CTR were generated (Figure 4). A 98-1-1 rule is followed for training, validation, and
testing. The kinematics of the CTR is challenging because it has both a joint and a translational space
which is bounded by inequalities. A picture of the configuration space of the robot and dataset image
is given in the appendix.

3.2 Generation of Numerical Jacobian

Adapting Lembono et. Al [9], sample points to learn each of the columns of the Jacobian Neural
network NJ Jacobian were numerically generated through the following equation.

N s
J ≈

∂ps(q)

∂qk
=

ps(..., qk + ∆q, ...)− ps(..., qk −∆q, ...)

2∆q
(9)

There are 6 columns to the matrix, and a ∆q = 0.001 was chosen. 50000 data points for each of the
6 parameters were generated with 98-1-1 split rule for training-testing-validation.

3.3 Loss Functions for Training

There are 4 sets of neural networks utilised in this project.

1. Forward Kinematics NF - Mean squared Loss was used.

`f = ||s−NF (q)||22 (10)

3

2. Jacobian Approximation NJ - Mean squared loss was used

`sJ = ||∂p
s(q)

∂qk
−Nf (q)||22 (11)

3. GAN Approximation NG, ND - Series of Standard and Non-Standard Losses

`SG = − 1

n

n∑
i=1

log(pgi) Standard Generator Loss (12)

`SD = − 1

n

n∑
i=1

log(pri)−
1

n

n∑
i=1

log(1− pgi) Standard Discriminator Loss (13)

`G1 = ||s−NG(I)||22 Target Loss based on Input I (14)
(15)

Next, we have some costs associated with the kinematic constraints of the robot. For the
rotational (α), and translational (β) parameters with lower lb and upper limits lu, we define
a quadratic barrier function fb(x).

rb(x) = min(x− lb, 0) violation of lower bound (16)
ru(x) = max(x− lu, 0) violation of upper bound (17)

fb(x, lb, lu) = 0.5(rb(x)2 + ru(x)2) (18)
(19)

4. Inverse Kinematics NI Mean squared Loss was used as comparison.
`f = ||q −NI(s)||22 (20)

4 Architecture, Algorithm, and Methods

Table 1: Architecture and Results

Neural Network Training with Adam Optimizer Architeecture Approximation Error
Nbs Nes |Sts| λ ψ Nip Nh Nop MSE Score

NF 128 200 490,000 0.0002 ReLU 6 (100,200) 3 0.2 mm NA
N s
J 128 200 49,000 0.0002 ReLU 6 50 3 0.1 mm NA
NG (3) 20000 882 490000 0.002 ReLU 12 (9 noise + 3 target) (500,250,100) 6 NA 0.23
ND 20000 882 490000 0.004 ReLU, Sigmoid (last) 6 (200), dr(0.5), (100), dr(0.5) 1 NA 0.77
NI 128 300 490000 0.0002 ReLU 3 (500, 200, 100) 6 eα = 3, eβ = 6 NA

The architecture of the final neural networks are shown in Table 8.1 below and the batch size (Nbs),
number of epochs (Nes), size of the training set (|Sts|), learning rate λwith standard Adam parameters
(β1 = 0.9, β2 = 0.999, ε = 1× 10−8), activation function (ψ), number of output parameters (Nop),
number of input parameters (Nip), hidden layer architecture (Nh), all neuron count (·) correspond to
fully connected layers, dr(k) signifies dropout with probability k. All neural networks were trained
with gradient descent, with Adam optimiser was used. Other activation functions were explored
such as Tanh, Leaky ReLU, but ReLU gave the best results. Adam (Adaptive Moment Estimation)
is particularly useful as it is adaptive - it stores an exponentially decaying gradient average, and is
particularly well suited to the large amount of data being trained (500k). For the GAN, 3 Generators
were trained, to create an ensemble generator, chosen to due to computational limitations of the author
[9]. GAN network was trained until generator loss was below 10, and discriminator and generator
had a score difference of > 0.5. The dimension of noise was chosen to be 9 (as it equals to 6 robot
configurations + 3 end-effector positions), and it was fed to the Generator with the target position.
We choose a higher learning rate for the discriminator as an experimental result for stability.

5 Experiments

The best way to evaluate the results is to see it in action in a selection of paths (n=3) in the CTR’s
configuration space and calculate the inverse kinematics for it - 3 methods are used - A straight Inverse
Kinematic Approach using NI , a brute force data driven approach combined with optimisation using
NF ,NJ , and the combined GAN Approach using optimisation NF ,NJ ,NG. Path 3 is shown in
Figure 3 for clarity, the remaining two are in the appendix. Experiment results are shown in Table 2.

4

Figure 3: This figure shows the path following of the different models of inverse kinematics. 100
points along the path were considered and calculated via the three models. Red corresponds to the
path. Green is the result of the inverse kinematic neural network, black is the data driven + Jacobian
Learning, and blue is Jacobian + GAN approach.

Table 2: Model Results for 100 points along Desired Path

Model Path 1 Path 2 Path 3
MSE (mm) Time (s) MSE (mm) Time (s) MSE(mm) Time (s)

Inverse 9.87 30 14.41 30 15.02 30
Jacobian Learning + Data Driven 1.91 654 2.01 713 2.04 539
Jacobian Learning + GAN 4.93 128 5.37 142 5.55 137

6 Discussion and Future Work

From Table 2 and Figure 3, it is clear that the the solely the Inverse model is not sufficient, with
high error even at low computation cost. The Data Driven model although accurate, is quite com-
putationally expensive, taking close to 10 minutes to generate 100 points. The Jacobian Learning +
GAN Approach although has some error, it is not as computationally expensive as the others. With
respect to total % of entire robot body, the Jacobian Learning + GAN corresponds to 2.5%, which is
significantly lower than results reported in literature, which is extremely promising for translation
with a physical robot.

A main consideration of improvement would be the GAN, the authors utilised 5 generators in their
ensemble; here, 3 was used due to computational limitations. Furthermore, the quadratic barrier
functions for the loss may need to be rewritten to guarantee better results for the Generator. This leads
to perhaps rewriting the parameter space of the robot as well. The difficulty of creating a convex, or
semi-convex loss function for the inequalities is a significant barrier, and a large portion of future
work will be devoted to exploring appropriate loss functions. In addition, hyperparameter tuning
to improve performance is still relevant, as controlling the stability of a GAN is very difficult, with
frequent mode collapse was observed. Furthermore, MATLAB is perhaps not the best environment to
handle such a complex GAN,rewriting the implementation in tensorflow would probably be better as
it is highly optimised [9].

7 Conclusion

Although GANs + Jacobian Learning offer a rather heavy neural network usage (10 in this report), it
is evident that utilising a combination of standard optimisation techniques with GAN neural networks
offer great promise in robot control. Particularly, redundancy, a critical barrier, can be potentially be
reasonably handled using GANs. From the preliminary results in this report, there is potential for

5

GANs to generate robot configurations with more constrained parameter spaces. When translating
simulation results with a physical robot, implementing a quick simulation-2-real lightweight network
can potentially take care of domain shift issues of the transfer learning [5].

References
[1] Hessa Alfalahi, Federico Renda, and Cesare Stefanini. Concentric Tube Robots for Minimally

Invasive Surgery: Current Applications and Future Opportunities. IEEE Transactions on
Medical Robotics and Bionics, 2(3):410–424, 2020.

[2] Christos Bergeles and Pierre E. Dupont. Planning Stable Paths for Concentric Tube Robots.
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3077–3082,
2013.

[3] Jessica Burgner-Kahrs, Hunter B. Gilbert, Josephine Granna, Philip J. Swaney, and Robert J.
Webster. Workspace Characterization for Concentric Tube Continuum Robots. 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1269–1275, 2014.

[4] Pierre E. Dupont, Jesse Lock, Brandon Itkowitz, and Evan Butler. Design and Control of
Concentric-Tube Robots. IEEE Transactions on Robotics, 26(2):209–225, 2010.

[5] Guoxin Fang, Yingjun Tian, Zhi-Xin Yang, Jo M P Geraedts, and Charlie C L Wang. Jacobian-
based learning for inverse kinematics of soft robots. arXiv, 2020.

[6] Reinhard Grassmann, Vincent Modes, and Jessica Burgner-Kahrs. Learning the Forward and
Inverse Kinematics of a 6-DOF Concentric Tube Continuum Robot in SE(3). 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 00:5125–5132, 2018.

[7] Keshav Iyengar, George Dwyer, and Danail Stoyanov. Investigating exploration for deep
reinforcement learning of concentric tube robot control. International Journal of Computer
Assisted Radiology and Surgery, 15(7):1157–1165, 2020.

[8] Mohsen Khadem, John ONeill, Zisos Mitros, Lyndon da Cruz, and Christos Bergeles. Au-
tonomous Steering of Concentric Tube Robots via Nonlinear Model Predictive Control. IEEE
Transactions on Robotics, 36(5):1595–1602, 2019.

[9] Teguh Santoso Lembono, Emmanuel Pignat, Julius Jankowski, and Sylvain Calinon. Gener-
ative Adversarial Network to Learn Valid Distributions of Robot Configurations for Inverse
Kinematics and Constrained Motion Planning. arXiv, 2020.

[10] Patrick Sears and Pierre E. Dupont. Inverse Kinematics of Concentric Tube Steerable Needles.
Proceedings 2007 IEEE International Conference on Robotics and Automation, pages 1887–
1892, 2007.

[11] John Till, Vincent Aloi, Katherine E. Riojas, Patrick L. Anderson, Robert James Webster III,
and Caleb Rucker. A Dynamic Model for Concentric Tube Robots. IEEE Transactions on
Robotics, 36(6):1704–1718, 2019.

[12] Jie Wang, Di Zhang, Tao Ma, Shuang Song, Wei Liu, and Max Q.-H Meng. A New Solution for
the Inverse Kinematics of Concentric-Tube Robots. 2018 IEEE International Conference on
Cyborg and Bionic Systems (CBS), 00:234–239, 2018.

6

8 Appendix

8.1 Tube parameters

Table 1: Parameters for the Tubes used in Simulation Study
Parameter Tube 1 Tube 2 Tube 3
Length (mm) 200 150 100
Curved Length (mm) 100 50 80
Inner Diameter (mm) 0.7366 1.0414 1.3335
Outer Diameter (mm) 0.8128 1.1176 2.0320
Stiffness (GPa) 50 50 50
Torsional Stiffness (GPa) 23 23 23
Curvature (1/m) 1/35 1/70 1/160

8.2 CTR Configuration Space and Dataset with Training Graphs

Figure 4: This figure shows the results of the Monte-Carlo sampling of the robot’s configuration
space with 500k samples (i.e dataset).

Figure 5: This figure shows a snippet of the dataset.

7

Figure 6: This figure shows training of a Jacobian Column Neural Network

Figure 7: This figure shows a training session of a GAN with one generator.

8

8.3 Inverse Kinematic Algorithms

Algorithm 1: Inverse Kinematics: GAN
Result: Find the Robot Configuration Space Corresponding to Point using a GAN
INPUT: ptarget,maxiter, α ;
while n < maxiter do

qi←−NG;
Evaluate O(ptarget,qgen);
qi+1 ←− qi − 2α(pi − p(q)) · NJ ;
n = n+ 1 ;

end

Algorithm 2: Inverse Kinematics: DataSearch
Result: Find the Robot Configuration Space Corresponding to Point using a Greedy Data Search
INPUT: ptarget,maxiter, α;
while n < maxiter do

qi ←− SearchSimulationData(ptarget);
Evaluate O(ptarget,qgen);
qi+1 ←− qi − 2α(pi − p(q)) · NJ ;
n = n+ 1 ;

end

9

8.4 Paths Studied

Figure 8: This figure shows the path following of Path 2 of the different models of inverse kinematics.
100 points along the path were considered and calculated via the three models.

Figure 9: This figure shows the path following of Path 1 by the different models of inverse kinematics.
100 points along the path were considered and calculated via the three models.

10

	Introduction
	Related Work and Overview of Methodology
	Optimisation via MLP Forward Kinematics Approximations
	Generative Adversarial Neural Network for Starting Configurations

	Dataset and Features
	Concentric Tube Kinematic Constraints
	Generation of Numerical Jacobian
	Loss Functions for Training

	Architecture, Algorithm, and Methods
	Experiments
	Discussion and Future Work
	Conclusion
	Appendix
	Tube parameters
	CTR Configuration Space and Dataset with Training Graphs
	Inverse Kinematic Algorithms
	Paths Studied

