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We develop a novel application of a partial convolutional neural network (PCNN) to inpaint
noisy portions of experimentally retrieved Cosmic Microwave Background (CMB) temperature and
polarization maps. Due to its weak radiative signal, CMB maps can often be contaminated by
extragalactic radio sources and galactic dust, leading to incomplete observations. Inpainting, or
restoring missing patches of pixels in images, has seen marked progress in other fields with generative
deep learning algorithms. Adapting these frameworks to cosmology, we will reconstruct sections of
CMB maps cropped along the equatorial plane and overlayed with a masking mimicking thermal
dust emissions. In generating predictions for this missing data, our PCNN achieves a runtime three
orders of magnitude faster than Markov Chain Monte Carlo numerical simulations per retrieved
patch and accurately recovers the angular power spectrum with 4% error down to angular scales
of roughly 5 arc minutes. Implementing this flexible, yet accurate result drastically reduces the
computational expense when compared to traditional numerical methods and shows promise with
inpainting other complex, non-Gaussian data distributions beyond astrophysics.

I. INTRODUCTION

Left over from the explosive beginnings of the cosmos,
the Cosmic Microwave Background (CMB) provides a
critical source of information about the nature and ori-
gins of the early universe [1]. While largely uniform, mi-
nuscule fluctuations in this old, faint electromagnetic ra-
diation captured by high-precision telescopes contribute
to a robust portfolio of evidence to form the current cos-
mological model. Proper measurement of these asymme-
tries leads researchers to estimate cosmological param-
eters with greater accuracy, potentially answering ques-
tions about the curvature of the universe, the position
of large scale structures, the ratio of baryonic to dark
matter, the distribution of dark energy, and much more.

Experimentally, collecting high-fidelity data poses a
unique challenge due to both the remarkable isotropy of
the CMB as well as our own inauspicious vantage point
from within a cloudy galaxy. Indeed, interference due to
galactic dust and extragalactic radio sources muddies the
observation, and removing the noisy foreground proves to
be a challenging computational problem. Typically, mis-
sions record locations of contaminated portions of the
sky to be removed from maps such that some estimator
may reconstruct the obfuscated, masked patch. Inpaint-
ing, or restoring missing patches of pixels in images, is
a burgeoning sub-topic in CMB data analysis, and in
this paper, we demonstrate the success of a method of
estimation using a partial convolutional neural network
(PCNN) to restore the missing measurements.

Conventional approaches to CMB inpainting relied on
a Gaussian constrained realization of a map generated by
an angular power spectrum C`. Some groups have esti-
mated foreground contamination with a variety of highly
accurate solutions to recover low-` spherical harmonic co-
efficients using sparsity, energy, and isotropy as priors in
Markov Chain Monte Carlo (MCMC) simulations [3] [4]

FIG. 1: Planck 2018 Commander CMB Temperature
Map, shown in Galactic Coordinates on a Mollweide

projection. [2]

FIG. 2: Planck 2018 Commander CMB Temperature
Map, with applied masking (in gray) to indicate regions

of missing pixels to be restored through inpainting.
Notice the most contamination exists in the equatorial

region, centered on the galactic plane. [2].

[5] [6] [7] [8] [9] [10]. COMMANDER, an MCMC based map-
maker employed by the European Space Agency’s Planck
satellite, uses Gibbs sampling to yield the density func-
tion of power spectrum C` and Bayesian inference define
likelihood of C` [2] [11] [12]. Later on, we use their re-
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sults as an evaluation metric for the physicality of our
test outputs.

However, facing pressure from the rapidly increas-
ing amount of data, numerical solutions became less
tractable for higher resolution maps. With increasingly
detailed maps, the astronomical amount of data pre-
cludes one from engaging in the computationally ex-
pensive numerical estimation process without sacrific-
ing finer granularity. In response to the influx of high-
resolution data, researchers have been applying genera-
tive deep learning neural networks to restore the miss-
ing information. These machine learning techniques do
not rely on an a-priori model, but rather learn sta-
tistical features organically from training. Generative
Adversarial Networks (GANs) and Variational Autoen-
coders (VAEs) have been independently shown to mimic
the galactic foreground and other sources of contamina-
tion by leveraging the surrounding structures of missing
patches to create synthetic, life-like data [13] [14] [15] [16]
[17] [18]. Another promising emerging sub-section par-
allel to GANs and VAEs are PCNNs which have been
demonstrated to have the flexibility to reconstruct the
maps and power spectra with irregular masking to a high
degree of accuracy [19] [20] [21].

Building on the rapidly developing and diverse exper-
imentation with deep learning algorithms, we implement
a novel algorithm that leverages the existing architecture
of PCNNs and extends them to inpainting experimental
data obtained from Planck ’s COMMANDER 2018 Data Re-
lease [2]. While general deep learning based inpainters
utilized in computer vision and satellite imaging optimize
largely on visual appeal, cosmological inpainting must
reflect the underlying statistical distributions which de-
fine the data. Traditional methods used both masked
(empty) pixels and the surrounding pixels to inpaint the
masked region, which leads to blurriness in the recovered
region. By masking the convolutional layer (i.e. partial
convolutions), the network only draws knowledge from
non-masked pixels.

II. METHODS

A. Generating the Dataset

In our experimentation, we take advantage of the latest
data release from the European Space Agency’s Planck
satellite to access the latest CMB temperature maps [2].
There exist two fundamental challenges when analyzing
cosmological phenomena in the context of deep learning,
namely, the original data rests on a three-dimensional
sphere and we must discretize the one map into data to
use in training, validation, and test sets. In order to nav-
igate these obstacles, we first project the spherical CMB
map onto a Cartesian plane using HEALPix (Hierarchi-
cal Equal Area Isolatitude Pixelation) which provides a
framework for processing functions on a sphere, critical
to translating the statistical summaries into data visual-

FIG. 3: An example 400× 400 pixel map patch,
projected from the spherical Planck data onto a

two-dimensional cutting on the left. This was generated
by the COMMANDER numerical estimator employed by the

European Space Agency. On the right, an example
400× 400 pixel mask patch corresponding to the

coordinates of the left map.

izations [22] [23]. Using the same software, we slice the
map, containing over 50 million pixels into 4,042 400×400
pixel images. Since the CMB is largely isotropic, it is rea-
sonable to assume that the distribution on these smaller
patches would be random fields, and therefore we may
treat them as independently and identically distributed.
Due to deep learning algorithms’ heightened performance
with larger data sets and the relative scarcity of viable
CMB maps to sample from, I apply data augmentation
techniques including randomly flipping patches horizon-
tally and vertically and rotating by integers of 90◦to ar-
tificially increase the number of training examples.

After generating patches of CMB, we must slice the
mask data set using Planck’s 2018 Component Separa-
tion Inpainting Common mask in Intensity, downloaded
from the Planck Legacy Archive [2]. This spherical mask
map is matches the CMB map sliced in the previous step
and covers 772 out of 4,042 patches. For the training set,
we pair maps and masks randomly to augment the sam-
pling pool, and for the validation and test sets, we divide
the 772 corresponding map/mask pairs into each. A vi-
sualization of the unaltered Planck data can be viewed
in FIG. 1, and the mask may be seen in FIG. 2. Addi-
tionally, a random example of a cropped patch and its
corresponding mask may be viewed in FIG. 3.

B. Network Architecture

Implemented in Keras, the model follows a U-Net ar-
chitecture with a partial convolutional layer and loss
function [24]. The following description adhere to the
description in this pivitol image inpainting paper using
PCNNs [25]. For the partial convolutional layer, given
filter weights W, bias b, and a binary mask of 0s and 1s
M, the partial convolution on the current pixel values X
can be defined as:
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FIG. 4: Illustration of the partial convolutional neural network. The encoder and decoder, which are connected by
channel-wise latent variables, have U-Net architecture, each with eight blocks. A more detailed description of each

layer can be found in TABLE I in Appendix A.

x′ =

{
WT (X�M) sum(1)

sum(M) + b if sum(M) > 0
0 otherwise

where x’ denotes the updated pixel values and � de-
notes element-wise multiplication. sum(1)

sum(M) adjusts the
output to accommodate the varying number of masked
inputs. Then, portions of the mask are removed in ar-
eas in which the algorithm can successfully condition the
output on the valid inpust such that the updated mask
pixel values m’ can be described by:

m′ =

{
1 if sum(M) > 0
0 otherwise

On a macro-level, a U-Net architecture defines the
model where all convolutional layers are replaced with
partial convolutional layers split between encoding and
decoding methods. During encoding, the input passes
through seven layers with the number of filters increas-
ing incrementally from 32 to 128 while the filter size de-
creases from 7 to 3. During decoding, the data passes
again through seven layers as the number of filters de-
creases until it meets the final concatenation with the
input. The final combining step allows the model to fill
in masked pixels with generated values. For more de-
tails on the network architecture, refer to TABLE I in
Appendix A.

The loss function compares the inpainting accuracy at
the pixel level, summarized as:

Ltotal =Lvalid + 6Lhole + 0.05Lperceptual (1)
+ 120Lstyle + 0.1Ltv

where Lvalid and Lhole represent the loss on the out-
put for the non-masked and masked pixels, Lperceptual

andLstyle are derived from the ImageNet VGG 16 pre-
trained weights, and Ltv corresponds to the smoothing
penalty on pixels of the masked region. For a more de-
tailed breakdown of the loss function terms, refer to [25].

C. Training

For the training procedure, we initialize weights us-
ing the pre-trained VGG 16 weights from ImageNet (an
experiment trained on millions of images and widely ac-
cepted as a good initialization for computer vision ap-
plications) [26]. After this, we use the Adam optimizer
twice: once, in the first pass with batch normalization
in all layers and a learning rate of α = 0.0001, and an-
other in the second pass with batch normalization only
in the decoder with a learning rate of α = 0.00005 [27].
This two-stage process is performed in inpainting appli-
cation to avoid a mean and variance "drift" arising from
the hole pixels interfering with the calculation and to
achieve a faster convergence. Due to memory constraints,
we used a batch size of 4 and trained 30 epochs. Of all
hyperparameters tuned, the learning rate proved to be
most consequential, contributing to time to convergence
as well as significant bias when α > 0.001 during either
encoding or decoding.

This experiment was conducted on Google Colab using
an Nvidia Tesla K80 GPU.

III. RESULTS

Shown in FIG. 5, we visually compare the ground truth
CMB temperature map constructed using Planck ’s 2018
COMMANDER MCMC inpainter on the left with our PCNN
retrieved patches on the right. In the center, we have
the original masked images which both techniques seek
to reconstruct.

Quantitatively, a key way to evaluate this PCNN ap-
proach’s success is to compare the theoretical angular
power spectra deerived from the highly accurate but com-
putationally expensive numerical estimators with spectra
extracted from our PCNN inpainted map. As shown in
FIG. 6, the angular power spectrum may be computed
via HEALPix on a macro scale from restitched together
complete patches [22] [23]. By calculating the power
spectra and pixel distribution residuals, we aim to ver-
ify that generative algorithms like PCNN are not only
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FIG. 5: Ground truth, target map patch made using
Planck ’s 2018 COMMANDER numerical estimator (left), the

same patch overlayed with its corresponding black
masking (center) and our PCNN inpainted image

(right).

"hallucinating" unrealistic data, but mimicking realistic
images.

The spherical harmonics, a mathematical basis or-
thonormal on the sphere is used to whose sum describe
the variations exhibited in CMB maps. We plot the ab-
solute value of CMB fluctuations against these spherical

FIG. 6: Comparison of theoretical CMB temperature
map angular power spectrum (orange) against PCNN
extracted spectrum (blue). Theory comes from the

highly accurate, but computationally expensive MCMC
numerical estimators.

FIG. 7: Theoretical E-Mode polarization angular power
spectrum (orange) against PCNN derived spectrum

(blue).

FIG. 8: Similarly, theoretical B-Mode polarization
(orange) against PCNN spectrum (blue).
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harmonics (the multipoles) to create an angular power
spectrum useful for characterizing cosmological param-
eters like baryonic matter density. Each flat patch is
binned into linearly spaced multipoles (∆` = 32 and
`max = 2500) with Pixell. In FIG. 6, a plot of compar-
ing the theoretical and experimental temperature spectra
shows that they roughly follow one another and qualita-
tively performs better at higher `. In figures 7 and 8,
we similarly see the theoretical spectra in orange and
empirical in blue. While the extracted, generated spec-
tra follows the general shape, significant noise dominates
the plot, especially when comparing a far more sensitive
metric like B-Mode polarization. This error could be
due to an additional smoothing in the inpainted region
in COMMANDER’s result and the inherent noise introduced
when extracting a macroscopic summary statistic from
restitched small patches back onto the sphere.

IV. CONCLUSION

In this paper, we presented a novel application of par-
tial convolutional neural networks to the task of inpaint-
ing contaminated CMB maps. Using this PCNN as a
baseline model, we cut the full-sky CMB maps into 4,096
400×400 pixel images consisting of mask/map pairs and
apply the algorithm to restore the missing pixels. This
method reconstructs the power spectrum of a CMB patch
to an accuracy of ≤ 5%, ≤ 3%, and ≤ 6% for tempera-
ture, E-Mode polarization, and B-Mode polarization re-
spectively. These results show the strength of PCNNs
to analyze highly non-Gaussian patterns on experimen-
tal data and displays promise for future deployment on
upcoming CMB mapping missions.

In future work, hyperparameters that demand priority

include the learning rate in both stages of using the Adam
optimization as well as the size of each batch. Previously,
special consideration was given to memory use and GPU
time, and in continued experimentation, we wish to nav-
igate this trade-off between computational expense and
accuracy. Ultimately, we seek to show that deep learning
algorithms provide a viable alternative to numerical esti-
mation and separation techniques, so it is imperative to
compare the runtime of one prediction generated by both
means with these updates. As astronomy, astrophysics,
and cosmology increasingly receive an influx of larger and
larger datasets, we must place a priority on developing
and applying deep learning techniques to confront this
information landscape. With a continued investment in
these efforts, these models may serve as a baseline for
other work in computer vision including restoration, en-
hancement, and scaling resolution beyond cosmology.
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Appendix A: Network Architecture in Detail

For our network architecture drawn pictorially in FIG.
4, we give details in TABLE I about the sixteen partial
convolutional layers (PConv) with corresponding filter
size, number of filters (or channels), and stride. The
"Batch Norm" column refers to whether that layer is
followed by a Batch Normalization layer, and "Nonlin-
earity" specifies which activation is used following Batch
Norm. Layers PConv1 - PConv8 constitute the encoder
stage, and layers PConv9 - PConv16 make up the de-
coder stage. Concatenation steps link the previous near-
est neighbor upsampled results with the corresponding
PConv layer from encoding.
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TABLE I: Partial Convolutional Neural Network Architecture

Layer Package Name Filter Size Number of Filters Stride/Up Factor Batch Norm Nonlinearity
PConv1 7× 7 64 2 - ReLU
PConv2 5× 5 128 2 Y ReLU
PConv3 5× 5 256 2 Y ReLU
PConv4 3× 3 512 2 Y ReLU
PConv5 3× 3 512 2 Y ReLU
PConv6 3× 3 512 2 Y ReLU
PConv7 3× 3 512 2 Y ReLU
PConv8 3× 3 512 2 Y ReLU

NearestUpSample1 512 2 - -
Concat1(w/ PConv7) 512 + 512 - -

PConv9 3× 3 512 1 Y LeakyReLU(0.2)
NearestUpSample2 512 2 - -

Concat2(w/ PConv6) 512 + 512 - -
PConv10 3× 3 512 1 Y LeakyReLU(0.2)

NearestUpSample3 512 2 - -
Concat3(w/ PConv5) 512 + 512 - -

PConv11 3× 3 512 1 Y LeakyReLU(0.2)
NearestUpSample4 512 2 - -

Concat4(w/ PConv4) 512 + 512 - -
PConv12 3× 3 512 1 Y LeakyReLU(0.2)

NearestUpSample5 512 2 - -
Concat5(w/ PConv3) 512 + 256 - -

PConv13 3× 3 256 1 Y LeakyReLU(0.2)
NearestUpSample6 256 2 - -

Concat6(w/ PConv2) 256 + 128 - -
PConv14 3× 3 128 1 Y LeakyReLU(0.2)

NearestUpSample7 128 2 - -
Concat7(w/ PConv1) 128 + 64 - -

PConv15 3× 3 64 1 Y LeakyReLU(0.2)
NearestUpSample8 64 2 - -

Concat8(w/ PConv6) 64 + 3 - -
PConv16 3× 3 3 1 Y -
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