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Abstract

Post-earthquake damage surveys currently require teams of domain experts to
visually inspect buildings to determine their safety, which is slow and subjective.
Efforts to automate the process using computer vision have been limited due to the
time and resource cost of labeling earthquake survey images. In this project I use
pseudo-labeling to take advantage of large numbers of unlabeled reconnaissance
images available on the web in a semi-supervised learning approach. I investigate
the effects of changing the start-epoch of pseudo-labeling during training. Results
show that prediction accuracy improved by up to 5% on a test set from the unlabeled
data, although improvement is sensitive to the accuracy of the base model.

1 Introduction

Following an earthquake, building safety evaluations must be done as quickly as possible to determine
whether a building is safe for continued occupation [1]. The current practice for preliminary post-
disaster evaluation is visual inspection [2], which is subjective to the reviewer [1, 3] and slow [4]. A
computer vision framework to assess damage of structures from images is crucial for the eventual
development of an autonomous reconnaissance system to replace manual inspection. Past work has
demonstrated reasonably good results for supervised image classification tasks like collapse mode
and damage state, with accuracy ranging from 60-90% [5]. However, these models require images to
be manually labeled and sorted into independent tasks (Figure 1). Image labeling is an expensive
and time-consuming job requiring teams of domain experts, leading to limited availability of labeled
data. Real earthquake survey images are highly varied and uncurated with characteristics that may be
different from existing training sets.

My contribution is a semi-supervised learning (SSL) approach to incorporate unlabeled survey images
into the model’s training, thereby providing a framework for future improvement of the model using
new post-earthquake building assessment images. I tackle two separate classification tasks: Task 1
(Scene Level) and Task 2 (Damage State) (Figure 1) due to their public availability. Both classification
tasks take as input images from earthquake reconnaissance surveys. The output are labels that help
engineers categorize the photo to determine if the building would be safe for occupancy, described in
more detail in Section 5.

https://github.com/aaronappelle/CS230Project


Figure 1: Hierarchy of multiple tasks for structural damage image classification on φ-Net dataset [5]

2 Related work

Building Damage Classification: Past attempts to use computer vision for classification of earth-
quake reconnaissance images use a limited scope in order to simplify the classification problem. One
type of scope limitation is on the type of damage, for example only detecting cracks on surfaces
[6]. Another type of scope limitation is the type of infrastructure considered, for example detecting
damage only on concrete bridges [7]. A third type of scope limitation is the nature of the input data
[8] where the input image should be lab-quality to match the training data distribution. Gao and
Mosalam [5] were the first to broaden the scope by publishing an open-source labeled image dataset
(φ-Net) for post-earthquake damage assessment containing variety and complex patterns of damage,
scene, building types, etc. The most useful model should be able to handle images from any setting,
including those not accounted for in the training dataset. There have not yet been any attempts
to incorporate large amounts of unlabeled earthquake reconnaissance images into the training of
classifiers.

Semi-supervised learning (SSL): SSL serves as a training strategy to leverage unlabeled data to
improve the model’s performance, which is especially appropriate for this application given the large
availability of unlabeled images and the high resource cost of labeling. Self-Training SSL methods
[9, 10] use a model trained on labeled data to predict pseudo-labels for the unlabeled data. Those
pseudo-labels are treated as ground truth in order to train the model simultaneously on labeled and
unlabeled data. Consistency Regularization methods [11, 12] use input noise in training to generate
predictions on unlabeled images that remain the same in the presence of noise. Hybrid methods such
as Fix-Match [13] combine pseudo-labeling with consistency regularization using both weakly and
strongly augmented images.

3 Dataset

I am using the PEER-Hub Image Net (φ-Net) [5] published by Gao and Mosalam with the Pacific
Earthquake Engineering Research center (PEER). The description of the image categories for each
classification task is given in Table 1. A limitation of the dataset is that, although the makeup of the
images for the two tasks is identical, the provided labels are single-attribute, i.e. Task 1 images are
not labeled with Damage State, and Task 2 images are not labeled with Scene Level.1 For visual
examples of images included in the dataset, please see Figures 4 and 5 in the Appendix.

1The original authors of φ-Net [5] are currently working to combine the datasets for multiple tasks into one
multi-attribute dataset

2



Classification Task Label Description

Task 1: Scene Level
Class 0: “Object” Photo of a building component like column or wall
Class 1: “Pixel” Close-up image of a surface, ex. cracked wall
Class 2: “Structural” Photo containing entire building or multiple buildings

Task 2: Damage State Class 0: “Damaged” Visible damage (cracking, crumbling) on the building
Class 1: “Undamaged” No visible damage on the building or component

Table 1: Description of the two φ-Net classification tasks.

Task 1 (Scene Level) has 27,306 images in total with a roughly even spread between the three classes.
There are 2997 images in the provided φ-Net test set, which is approximately 10% of the dataset.
I use a validation set size equal to 10% of the dataset, leaving 21,878 images for training. Task 2
(Damage State) has 13,271 images in total with a roughly even spread between the two classes. There
are 1460 images in the provided φ-Net test set, which is 11% of the dataset. I use a validation set size
equal to 10% of the dataset, leaving 10,630 images for training.

For the SSL implementation, I manually gathered an additional dataset of unlabeled earthquake
survey images from multiple sources. A first source was the the Civil and Environmental Engineering
(CEE) department at Stanford from Prof. Eduardo Miranda2, whose group regularly performs post-
earthquake surveys for research after major events, ex. [14]. Secondly, I gathered thousands of
images by webcrawling [15, 16]. The total size of the unlabeled image dataset is 8092 images. For
evaluation of performance on an unlabeled test set, I manually labeled 200 images. The remainder of
the unlabeled images (7892) are used for training by SSL. I did not manually label any images for
inclusion in the validation dataset due to the time cost (which is reflective of real-life challenges).
From the 200 labels, the test set appears to have a class imbalanced distribution: 91 "Object Level",
9 "Pixel Level", and 100 "Structure Level" for Task 1; 112 "Damaged", 88 "Undamaged" for Task 2.

In summary, I test the models on two different test sets:

1. φ-Net Test Set: Task 1 and Task 2 test sets provided with φ-Net, sized approx. 10% of the
labeled training dataset (a few thousand images)

2. Unlabeled Data Test Set: A test set of 200 images from the unlabeled dataset which I
manually labeled, whose distribution is different from the φ-Net training data

All images are pre-processed by downsampling to 224x224 pixels with 3 channels (RGB). Images
with low original resolution (below 448x448) or bizarre aspect ratios were manually discarded from
the dataset. I use image augmentation techniques on the labeled training dataset by applying small
amounts of rotation, translation, zoom, shear, rescaling, and horizontal reflection. None of the
transformations distort the meaning of the images. Image augmentation is not used on the unlabeled
image dataset.

4 Methods

For the baseline model, I use transfer learning with the architecture of VGG-16 [17] trained on
ImageNet [18]. After discarding the pre-trained fully-connected layers of VGG-16, I add on 2D
Global Max Pooling to reduce the image dimensions to one while retaining the number of channels,
followed by two fully-connected (FC) layers to reduce the dimensionality to the number of output
classes. The first FC layer has 512 hidden units and uses dropout with a keep probability of 0.5. The
second FC layer has the same number of units as output classes (three for Task 1, two for Task 2).
Then the models are trained separately for the two tasks. I chose to keep all pre-trained convolutional
layers of VGG16 because high-level features in natural objects from ImageNet are greatly helpful in
identifying features of buildings. Future work might explore the effect of re-training some of the later
layers of VGG-16. Detailed metrics of the baseline models are in Table ??.

For the SSL model, I use the Pseudo-Label Method [9]. In this method the model is trained
simultaneously on labeled and unlabeled images. Cross-entropy loss is used for the labeled images,
and pseudo-labels are generated for unlabeled images using the same model according to maximum
confidence. The loss function is then a weighted sum of the loss of the labeled data and the loss of
the unlabeled data: L = Llabeled + α(t) · Lunlabeled. Therefore α(t) determines the importance of

2https://profiles.stanford.edu/eduardo-miranda
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the pseudo-labels over time. Standard practice is to start α at 0 at epoch T1 and increase it linearly
over time until some final training epoch T2 [9]:

α(t) =


0 t < T1
t−T1

T2−T1
]αf T1 ≤ t < T2

αf T2 ≤ t

Because the scheduling of α(t) is crucial for performance, I chose to run experiments varying T1. If
T1 is too soon, it will disturb the training on labeled data. If T1 is too late, then the benefits of using
unlabeled data will diminish. I chose to fix T2 to be the last training epoch, matching the training
schedule of the baseline model. Otherwise, the model hyperparameters are the same as VGG-16, and
the new layers are trained using the Adam optimizer with learning rate 1× 10−4 and batch size 32.

5 Results and Discussion

I am reporting the accuracy and F1 score on the two test sets described in Section 5. The F1 score is
useful for evaluating the performance on the imbalanced test set from the unlabeled data. The φ-Net
test set is class-balanced, so accuracy is the most important. Additionally, I am reporting a measure
of the model’s prediction confidence, which is computed as the average of the softmax probability of
the predicted class (across examples).

Task 1: Scene Level Task 2: Damage State
Test Set Metric Baseline T1 = 5 T1 = 10 T1 = 15 Baseline T1 = 5 T1 = 10 T1 = 15

φ-Net
Accuracy 0.9009 0.9046 0.9042 0.9006 0.8116 0.8062 0.8144 0.8171
F1 0.9014 0.9053 0.9040 0.9010 0.8116 0.8056 0.8143 0.8171
Confidence 0.9466 0.9391 0.9427 0.9436 0.8838 0.8744 0.8768 0.8779

Unlabeled
Accuracy 0.7300 0.7850 0.7550 0.7650 0.7000 0.6800 0.6800 0.6950
F1 0.7250 0.7788 0.7466 0.7616 0.6986 0.6806 0.6806 0.6921
Confidence 0.9513 0.9481 0.9633 0.9532 0.8952 0.8766 0.8756 0.8763

Table 2: Test Set Performance. All models except baseline are using SSL with the start epoch of
pseudo-labeling indicated by T1

Task 1 (Scene Level)

For Task 1, the baseline model using transfer learning achieves 90.6% accuracy on the provided
φ-Net test set, but only 73% accuracy on the unlabeled data test set. The discrepancy in performance
largely comes from the fact that the unlabeled images come from a different image distribution than
the φ-Net training data. The SSL models do not significantly affect performance on the φ-Net labeled
test set, with all metrics being effectively the same as the baseline model.

SSL does noticeably improve performance on the unlabeled data test set, achieving 78.5% accuracy
up from 73% in the baseline for the best SSL model with T1 = 5. Comparing across the three
SSL models, having an earlier start time to include unlabeled data led to the largest performance
improvement. However, there is not a clear trend as the T1 = 10 model performs worse than the
T1 = 15 model. Therefore we cannot conclude that starting the pseudo-labeling earlier is necessarily
better. Nevertheless, all models which utilize the unlabeled training data outperform the baseline
model.

When looking at the training history for the SSL models like in Figure 2, it is clear that there is a jump
in training accuracy when the new training data is introduced at epoch 5. Also, the validaiton loss is
no longer monotonic as the training depends on predictions of the model as part of the Pseudo-Label
Method [9]. Setting T1 = 5 may have been best in this instance becuase epoch 5 is approximately
when the validation loss stopped decreasing in the baseline model (see Figure 7 in the Appendix).
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Figure 2: Task 1 training history for SSL with T1 = 5

I checked image-by-image errors that the baseline model made on the unlabeled test set. The analysis
reveals that the baseline model tends to struggle on indoor images which are classified as “Object
Level” (Figure 3) due to being larger than a surface but smaller than a whole building. There is a
scarcity of these types of photos in the φ-Net dataset, explaining why SSL correctly labels them.

Figure 3: Images from the unlabeled test set that the baseline model mislabeled

Task 2 (Damage State)

For Task 2, the baseline model using transfer learning achieves 81.2% accuracy on the φ-Net test
set, and 70% accuracy on the unlabeled data test set. This is similar to the performance discrepancy
observed in Task 1: again the images in the unlabeled test set are harder to classify when trained on
the distribution of images in φ-Net. For this classification task, SSL trivially improves classification
performance on the φ-Net test set but does not improve performance on the unlabeled test set.

It is useful to consider why SSL fails to improve performance on the unlabeled images for this task,
seeing as it does improve performance in Task 1. One possible explanation is that the predictive
performance of the model for Damage State is worse than for Scene Level (lower accuracy). The
accuracy of predictions is crucial for the Pseudo-Labeling method, because it directly determines
the proportion of correct pseudo-labels. In Task 2, it can be seen that the model is generally very
confident on predictions (over 88%) but achieves relatively poor accuracy. Rizve et. al. [19] argue that
Pseudo-Labeling “underperforms due to erroneous high confidence predictions from poorly calibrated
models”, and that the incorrect pseudo-labels lead to noisy training. This hypothesis is supported
by my results. Given a highly accurate base model, the Pseudo-Labeling method should generally
improve performance on test sets with different distributions as it can be considered equivalent to
Entropy Regularization [9].

6 Conclusion/Future Work

Semi-supervised learning (SSL) using the Pseudo-Labeling (PL) method allows large quantities of
unlabeled images to be used during training. For the task of classifying image Scene Level, PL
using a set of unlabeled images successfully improved performance on a test set of images from that
same set. For the task of classifying building Damage State, PL did not improve performance on the
unlabeled test set. This discrepancy is likely due to the Damage State model having poor accuracy
and therefore causing incorrect pseudo-labels. No strong trend emerged with the start epoch (T1) of
pseudo-labeling, although the results for Task 1 suggest that it would be a good idea to initiate PL
at the epoch when validation loss begins to plateau. Future investigations can conduct sensitivity
studies to the T1 parameter, the accuracy of the supervised model, and the size of the unlabeled image
dataset. Recent methods like FixMatch [13] would likely perform better than pseudo-labeling alone.
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7 Contributions

All work is my own. The models were implemented using Keras [20] with TensorFlow backend [21].
Thank you to GitHub user koshian2 for the baseline Keras version of the Pseudo-Labeling method3.
Thank you to Akhil Jhanwar for a guide on transfer learning with VGG-16. 4.
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Appendix

Data

Figure 4: Example of Task 1 images labeled with Scene Level in φ-Net [5]

Figure 5: Example of Task 2 images labeled with Damage State in φ-Net [5]

Task 1 Results

Model Training Histories:

Figure 6: Task 1 training history for baseline supervised model

Figure 7: Task 1 training history for best SSL model, T1 = 5
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Performance on φ-Net test set:

Figure 8: Baseline Task 1 Performance on φ-Net test set

Figure 9: Best SSL Model (T1 = 5) Task 1 performance on φ-Net test set

Performance on unlabeled data test set:

Figure 10: Baseline Task 1 performance on unlabeled data test set

Figure 11: Best SSL Model (T1 = 5) Task 1 Performance on unlabeled data test set
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Task 2 Results

Model Training Histories:

Figure 12: Task 2 training history for baseline supervised model

Figure 13: Task 2 training history for for best SSL model, T1 = 15
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Performance on φ-Net test set:

Figure 14: Baseline Task 2 Performance on φ-Net test set

Figure 15: Best SSL Model (T1 = 15) Task 2 performance on φ-Net test set

Performance on unlabeled data test set:

Figure 16: Baseline Task 2 performance on unlabeled data test set

Figure 17: Best SSL Model (T1 = 15) Task 2 Performance on unlabeled data test set
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