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1 Introduction and Motivation

There has been much work done on video and image super resolution, where previous approaches
have handled up-sampling of both images and videos. However, there is less literature on up-sampling
images and videos in the surveillance domains, especially up-sampling low resolution security footage.
We propose using Generative Adversarial Networks (GANs) to upscale low resolution surveillance
videos. The outcome will be a model that will take as input a low resolution video (surveillance) and
output a video at a higher resolution. This video super resolution output can be used by both manual
surveillance operators as well as machine learning algorithms both in batch and real time scenarios to
identify and analyze anomalous events in security feeds. A further extension of this work could be
used for both scene and subject restoration in the surveillance videos.

2 Dataset

There exist a number of low resolution video anomaly datasets used by the deep learning community
for research. However few surveillance video datasets exist with HR videos. Our focus in this study
will be on up-scaling surveillance videos from the UCF Video Anomaly Detection Dataset[19] so
we can provide the research community with a high quality HR video anomaly dataset. We use
the Video Anomaly Detection Dataset [[19]] for training, validation and testing. The original dataset
consists of 128 hours of videos consisting of 1900 real-world surveillance videos, with 13 realistic
anomalies such as fighting, road accident, burglary, robbery, etc. as well as normal activities captured
by surveillance cameras. The videos are long untrimmed surveillance videos with low resolution with
large intra-class variations due to changes in camera viewpoint and illumination, and background
noise, thus making it a great fit for our use case. For our experiments we use a miniature version of
this dataset with 2207 images, split into 1200 training, 507 validation images and 500 images in the
test set. Few samples from the dataset can be seen in Figure 1.

3 Approach and Methodology

3.1 Choice of Neural Architecture
Super-resolution (SR) is used to upscale an image or video from a low-resolution (LR) image or

video to a high-resolution (HR) image or video. The method is essentially estimating the HR image
or video from its LR equivalent.

CS230: Deep Learning, Winter 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



Frame No: = 008
. g

Figure 1: Sample frames from Video Anomaly Detection Dataset

Advances in the research of learning-based methods, have increased the performance of single-image
SR (SISR) significantly. Applying the advances in SISR to video SR (VSR) however is more
challenging, as simply taking SISR over each video frame, can lead to inferior results due to temporal
coherency issues. Recent research has shown that combining state-of-the-art SISR and (multi image
SR) MISR methods with a spatio-temporal approach surpasses state-of-the-art VSR results with the
introduction of iSeeBetter.[2]] iSeeBetter essentially uses recurrent-back-projection networks as its
generator to extracts spatial and temporal information from prior, current and next frames. For it to
improve the “naturally” of the super-resolved images the generator from super-resolution generative
adversarial network (SRGAN) is used.

To this effect, we have chosen to experiment with the following approaches:

* Baseline Approach: Sub-pixel CNN Based Video Up-sampling
* Proposed Approach 1: Enhanced SRGAN Based Video Up-sampling

* Proposed Approach 2: Recurrent Back-Projection Networks (RBPN) + SRGAN Based
Video Up-sampling

3.2 Baseline Approach - Sub-pixel CNN Based Architecture
3.2.1 Model Details and Architecture

Our baseline approach follows work done by Shi et al. on Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network which is the first
convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU.
In this approach, contrary to previous works, the authors propose to increase the resolution from
LR to HR only at the very end of the network and super-resolve HR data from LR feature maps.
This eliminates the need to perform most of the SR operation in the far larger HR resolution. For
this purpose, this approach proposes an efficient sub-pixel convolution layer to learn the upscaling
operation for image and video super-resolution. For the baseline version architecture we will be using
1=3, (f1, nl) = (5, 64), (f2, n2) = (3, 32) and f3 = 3 in our evaluations. The choice of the parameter
is inspired by SRCNN’s [3] 3 layer 9-5-5 model.

3.2.2 Training and Scoring Details

In the training phase, 17r x 17r pixel sub-images are extracted from the training ground truth images
IHR, where r is the upscaling factor. To synthesize the low-resolution samples ILR, we blur IHR
using a Gaussian filter and sub-sample it by the upscaling factor. The sub-images are extracted from
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Figure 2: The proposed efficient sub-pixel convolutional neural network (ESPCN), with two convolu-
tion layers for feature maps extraction, and a sub-pixel convolution layer that aggregates the feature
maps from LR space and builds the SR image in a single step.
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Figure 3: Train and Validation loss for sub-pixel convolutional neural network (ESPCN).
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from ILR. This ensures that all pixels in the original image appear once and only once as the ground
truth of the training data. The training stops after no improvement of the cost function is observed
after 100 epochs. Initial learning rate is set to 0.01 and final learning rate is set to 0.0001 and updated
gradually when the improvement of the cost function is smaller than a threshold p. The training takes
roughly about 12 hours on a 1080 Titan X Pascal GPU on images from UCF Mini Image Dataset [20]
for upscaling factor of 4 and 100 epochs. The train and validation charts can been seen in Figure 3.

3.3 Proposed Approaches: GAN Based Up-Sampling
3.3.1 Enhanced SRGAN - Model Details and Architecture

Our first proposed approach is inspired by Ledig et al. on Photo-Realistic Single Image Super-
Resolution Using a Generative Adversarial Network [14]. This was first framework capable of
inferring photo-realistic natural images for 4x upscaling factors using a deep residual network
to recover photo-realistic textures from heavily down-sampled images. In this approach a super-
resolution generative adversarial network (SRGAN) for which is applied a deep residual network
(ResNet) with skip-connection and diverge from MSE as the sole optimization target. Different from
previous works, this approach defines a novel perceptual loss using high-level feature maps of the
VGG network[18] combined with a discriminator that encourages solutions perceptually hard to
distinguish from the HR reference images.

At the core of this very deep generator network G, which is illustrated in Figure 3 are B residual blocks
with identical layout. Inspired by Johnson et al. [12] employed are the block layout. Specifically, two
convolutional layers with small 3x3 kernels and 64 feature maps followed by batch-normalization
layers and ParametricReLU [[10] as the activation function. The resolution of the input image is
increased with two trained sub-pixel convolution layers as proposed by Shi et al. [17]]. To discriminate
real HR images from generated SR samples a discriminator network is trained. The architecture
is shown in Figure 4. The architectural guidelines followed are summarized by Radford et al.
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Figure 4: Architecture of Generator and Discriminator Network with corresponding kernel size (k),
number of feature maps (n) and stride (s) indicated for each convolutional layer.

Discriminator Loss and Generator Loss

= Discriminaior Loss == Generator Loss

Figure 5: GAN losses for Enhanced SRGAN training

[16] and use LeakyReL.U activation ( = 0.2) and avoid max-pooling throughout the network. The
discriminator network contains eight convolutional layers with an increasing number of 3 x 3 filter
kernels, increasing by a factor of 2 from 64 to 512 kernels as in the VGG network [18]]. Strided
convolutions are used to reduce the image resolution each time the number of features is doubled. The
resulting 512 feature maps are followed by two dense layers and a final sigmoid activation function
to obtain a probability for sample classification.

Training and Scoring Details For our vi SRGAN version we have run the model on our UCF[20]
mini dataset. All experiments are performed with a scaling factor of x4 between LR and HR images.
We obtain LR images by down-sampling HR images using the MATLAB bicubic kernel function.
The mini-batch size is set to 16. The spatial size of cropped HR patch is 128 x 128. Training a deeper
network benefits from a larger patch size, since an enlarged receptive field helps to capture more
semantic information. However, it costs more training time and consumes more computing resources.
The training process is divided into two stages. First, train a PSNR-oriented model with the L1 loss. ,
then employ the trained PSNR-oriented model as an initialization for the generator. The learning rate
is set to 0.0001 and halved at [10, 30, 50, 75] iterations.

Pre-training with pixel-wise loss helps GAN-based methods to obtain more visually pleasing results.
The reasons are that 1) it can avoid undesired local optima for the generator; 2) after pre-training,
the discriminator receives relatively good super-resolved images instead of extreme fake ones (black
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Figure 6: Overview of iSeeBetter [2]]

Table 1: Adopted notation for iSeeBetter

HR, input high resolution image
LR, low resolution image (derived from HR;)
F, optical flow output
H,_; residual features extracted from (LR;.;, F;-;, LR;)
SR, estimated HR output

or noisy images) at the very beginning, which helps it to focus more on texture discrimination. For
optimization, we use Adam with 1 =0.9, 2 = 0.999. We implement our models with the PyTorch
framework and train them using NVIDIA Titan X Pascal GPUs. The SRGAN training is very
computational expensive and takes about 36 hours on a Titan X Pascal 1080 GPU for 200 EPOCHS
for 1707 images from UCF Mini dataset [20]. The Generator and Discriminator (GAN) losses are
seen in Figure 5.

3.3.2 iSeeBetter - Model Details and Architecture

This approach is inspired by iSeeBetter [2]. The framework achieved state-of-the-art results by
combining Recurrent Back-Projection Networks (RBPN) as its generator and the discriminator from
SRGAN. Figure 7 shows the original architecture of the iSeeBetter-network (see Table 1 for adopted
notation). The RBPN generator preserves spatio-temporal information by combining SISR and
MISR. The horizontal flow of the network (illustrated by the blue lines in Figure 7) upsamples LR,
using SISR, with a DBPN architecture [9]. Up-down-up sampling is performed using 8 x 8 kernels
with a stride of 4 and a padding of 2. As with enhanced SRGAN we use ParametricReLU [10] as
the activation function. The vertical flow of the network (illustrated by the red arrows in Figure 7)
performs MISR by utilizing a ResNet Architecture. We use three tiles of five blocks each consisting
of two convolutional layers with 3 x 3 kernels, padding of 1 and stride of 1. As with enhanced
SRGAN and the DBPN architecture we use ParametricReLU [10]] as the activation function. The
MISR computes the residual features from LR, its neighboring frames (LR, ., ..., LR, _,) and the
precomputed dense motion flow maps (F; ., ..., Fy_,).

RBPN detects missing information from LR; at each projection stage and recovers details by extracting
residual features from neighboring frames. As a result, the convolutional layers that feed the projection
modules in Figure 7 act as feature extractors.

Training and Scoring Details We ran the model on our UCF [20] mini dataset for our v1 iSeeBetter
edition. The LR and HR images are scaled by a factor of four in all experiments. We get LR images
by using the MATLAB bicubic kernel function to downsample HR images. The size of the mini-batch
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Figure 7: GAN losses for iSeeBetter training
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Figure 8: Comparison of our model performance across various neural architectures.

is set to one. The cropped HR patch has a spatial size of 32x32. A larger patch size helps to train a
deeper network since a larger receptive area helps to collect more semantic knowledge. However, it
takes longer to practice and uses more computational power.

MSE is the most widely used loss function in a wide range of state-of-the-art SR methods that seek
to increase an image’s PSNR to determine image quality. Optimizing for MSE during training is
widely known to increase PSNR and SSIM. These metrics, however, may fail to capture fine details
in the image, ensuing in a misrepresentation of perceptual quality. [14] The reason for this it was
found in some experiments that some manually distorted images had an MSE score comparable to the
original image.[2]] We train the model with the four loss functions originally proposed in iSeeBetter
(MSE, perceptual, adversarial, and TV) and weight the results for each frame. We use the PyTorch
framework to build our models, and we train them on NVIDIA Tesla V100 GPUs. The UCF Mini
dataset [20] was used to train the model. The Generator and Discriminator (GAN) losses are seen in
Figure 6.

4 Evaluation Methodology/Results

Our models performance has been quantified using several image quality assessment models. We
built on the work of Ding et al. on the Comparison of Full-Reference Image Quality Models
for Optimization of Image Processing Systems[13]. They found that the Deep Image Structure
and Texture Similarity (DISTS) model was the most robust model evaluated, and was superior at
evaluating super resolution tasks.

1. DISTS, or Deep Image Structure and Texture Similarity metric [4]], is explicitly designed
to tolerate texture resampling (e.g., replacing one patch of grass with another). DISTS
is based on an injective mapping function built from a variant of the VGG network, and



combines SSIM-like structure and texture similarity measurements between corresponding
feature maps of the two images. It is sensitive to structural distortions but at the same time
robust to texture resampling and modest geometric transformations. The fact that it is robust
to texture variance is also helpful when evaluating images generated by GANs. We used
an open source implementation provided by Ding et al[[13]. As DISTS maps images to a
perceptual distance space, a score closer to 0 corresponds to more similar images. We have
chosen to report scores as 1 — DIST'Sy;s: to allow for an intuitive comparison. We used it
as our objective measure of performance.

2. SSIM, or Structural Similarity (SSIM) index [24], has become a standard way of measuring
IQA for a variety of applications. We included it for reference as many people are familiar
with this method and it is used quite frequently. A score closer to one indicates a higher
quality image.

3. MOS, or Mean Opinion Score, is the average of human judgements on the quality of the
image. This metric is based entirely on human perception, and as such it is dependent
on a variety of environmental factors that affect the display of the image. To compensate
for human biases and differences in environment, we randomly selected 15 frames which
we held constant across the upsampling methods. For each frame we sourced 15 separate
individuals via Mechanical Turk to provide a MOS score for that frame, in isolation of any
other images.
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Figure 9: DISTS, SSIM, and MOS Distributions

Using 506 images on the UCF dataset, we evaluated both our ESRGAN model and the RBPN+
models against the baseline. The results shown in Figure 9.

Our ESRGAN model was found to have both a higher DISTS and MOS score distribution. ESRGAN
yielded over a full point increase in MOS mean compared to the baseline versus a third of a point
increase with RBPN+. However, RBPN+ was found to have the highest SSIM score which again
suggests that SSIM scores are not predictive of higher MOS scores, echoing the finding by Ding
et al.[13]. We have also listed all details on our choice of hyper parameters, train/val losses and
evaluation results in Figure 10.
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Figure 10: Training and Scoring Hyper Parameters and Evaluation Metrics

5 Conclusion

We were able to experiment and evaluate three approaches for video up-sampling of surveillance
videos on the UCF Mini [20] dataset. In conclusion we find that the Enhanced SRGAN based
approach produce the highest quality and resolution for the 4x up-sampled images and videos across
the three approaches we evaluated as listed in Section 3 (Approach and Methodology) as demonstrated
in the Evaluation Methodology/Results section and as shown quantitatively by the SSIM and DISTS
scores in Figure 8. Also in Figure 8 we see that the Mean Opinion Score (MOS) show consistency
with our quantitative evaluation. Another important observation is the scoring latency of these
approaches; The Sub-pixel CNN Based Video Up-sampling performs 4x up-scaling at the lower
latency, almost 10x faster than the GAN based approaches that we have implemented. This makes the
Sub-pixel CNN Based Video Up-sampling a good fit for more real time surveillance scenarios with a
trade-off of up-scaling quality, whereas the GAN based approach produce higher quality up-scaling
with high latency, making them a good fit for offline up-sampling scenarios.

6 Future Work

Through this work, we strive to provide a novel evaluation and adaptation of state of the art neural
architectures to up-sample low resolution surveillance images and videos. Building on this work we
plan to use our best performing model to up-sample the UCF Anomaly Videos [20] dataset to provide
the research community a higher quality surveillance dataset to experiment on. We also plan to build
upon our experiments to apply them in the domain of surveillance scene and subject restoration using
object detection and up-sampling using our models.
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