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Abstract

We live in one of the most prolific eras of scientific research. More than
15,000 research papers are submitted to the Arxiv preprint server every
month. It has become impossible for any researcher to keep track or search
for papers relevant to his/her field of study. In this project, we address this
embarrassment of riches by exploring six different deep learning architectures:
TF-IDF, Doc2Vec, LSTM, RoBERTa, GPT-2 and Sentence-BERT to create
an arxiv paper recommender. Our central aim is to create meaningful
document embeddings for each paper based on its abstract. The embeddings
are used to curate recommendations based on the cosine similarity distance
between a given paper and the rest of the corpus. Our fine-tuned transformer
architectures provide impressive recommendations that are at par with the
current state of the art. We argue that our citation-agnostic content based
models lead to more democratic and meaningful recommendations.

1 Introduction

The Arxiv serves one of the most essential needs of modern science i.e. quick and open access
to research. It has more than 1.8 million research papers as of today and counting. This
phenomenal rise of submissions has led to enormous progress in science, but has also made it
harder for researchers to find papers closer to their interests. The difficulty of finding the
right research papers not only affects our scientific endeavours as a whole but also leads to
several inefficiencies in the day-to-day life of the individual researcher. There is an extremely
high opportunity cost of not having found the relevant literature, or of working on a project
for a few months only to stumble upon a similar paper that solved it several years ago. Worst
of all many interesting papers, especially from less famous authors, get easily forgotten.
Scientific papers contain subject specific knowledge and a sophisticated logical structure. As
a result, it is hard to meaningfully search for them using text based inquiries only. Although
traditional search engines such as Google provide search results based on advanced text
similarity protocols, page-ranking algorithms, collaborative filtering and etc., a content based
deep learning model that is fine tuned on a corpus of scientific papers would be invaluable.
Our central goal is to obtain meaningful embeddings for each paper based on its abstract.
The embedding space is then used to create a paper recommender and a contextual search
engine by using the cosine similarity distance between a given vector and the rest of the
corpus. We employ six different methods to obtain the document embeddings for each
paper and present them in increasing order of complexity. In section 4.1, we use TF-IDF
and Doc2Vec. In section 4.2, we employ an LSTM recurrent neural network with a proxy
task of paper title prediction. In sections 4.3 and 4.4, we fine-tune GPT-2, RoBERTa and
Sentence-BERT on the high energy physics abstracts corpus to obtain more meaningful
document embeddings.
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Due to the absence of a database of paper preferences of several users, we formulate three novel
metrics based on co-citations, relevance and novelty to judge performance.1 We elaborate
upon these metrics in section 5 and argue that our models are at par with the current state of
the art. The problem of finding a quantifiable metric to rate “good” recommendations (purely
based on content) is almost as hard as the problem itself but we believe that the combination
of our three metrics provides a necessary, if not sufficient, measure of performance.

2 Related work

Recommendation systems can be broadly categorized into collaborative vs content based
filtering [2, 3, 4]. Collaborative filtering provide recommendations based on the rating
profiles and preferences of all users collectively, while content based filtering provides
recommendations based on the content of the item and the preferences of a specific user.
We focus on content based filtering methods for two main reasons. First, we do not have
access to user ranking profiles for scientific papers or citation statistics that are essential
for any collaborative filtering model. Second, we believe that citation-agnostic content
based recommendations provide more democratic recommendations instead of recommending
famous papers only.
A lot of interesting work has been done on academic paper recommendation in recent years
[5, 6]. Collaborative filtering methods employ several different techniques including, but not
limited to, knowledge graphs [7], graph neural networks [8], reinforcement learning [9] and
etc. On the other hand most state of the art content based approaches use bag-of-words,
TF-IDF vectorizer [10, 11] or Word2Vec [12, 13] to generate document embeddings. These
embeddings are then used to obtain recommendations with the help of clustering algorithms
or cosine similarity distance. Karpathy’s arxiv-sanity [11] is a good example of this method.
In our opinion, Microsoft Academic (MA) [14, 15] serves as the current state of the art
for scientific paper recommendation. It uses a combination of collaborative and content
based filtering and benefits from their in-house Bing search engine, citation graphs and
other data mining techniques. However, its over reliance on citations only leads to relevant
recommendations that are also highly popular. As a result it misses out on several interesting
but less famous papers.
To the best of our knowledge, our work is the first to use the Transformer [16] based archi-
tectures [17, 18, 19] for scientific paper recommendation. We find that the recommendations
obtained from fine-tuning GPT-2 and SBERT are almost at par with traditional content
methods based on TF-IDF and Doc2Vec in terms of co-citations as shown in figure 3. We also
find that our recommendations are at par with the elaborate collaborative+content filtering
methods used in MA in terms of relevance and novelty as shown in table A.1. Finally, we
discover that TF-IDF provides a tough to beat baseline for scientific paper recommendation.

3 Dataset

We use the data set provided by Arxiv on Kaggle consisting of 1.7M json entries [20]. Each
json item consists of the paper metadata such as its abstract, subject category, author name,
title, date of submission and etc. We focus on the domain of High energy physics theory
(hep-th) including cross-lists. Our Pandas dataframe contains 140,500 papers with 4 columns,
one each for arxiv id, abstract, title and authors. The average length of an abstract is 114.6
words with a standard deviation of 55 words. The total vocabulary count after preprocessing
is 36210. We also create two additional datasets for measuring model performance.
The first dataset contains a list of 16 influential papers in hep-th and a corresponding list
of recommendations. Each one of our six models recommends 30 papers for a given paper
(hereafter referred to as the parent). Thus this dataset is a list of 16 × 6 × 30 = 2880 (parent,
recommendation) records with a co-citation count for each record. The co-citation count

1After the completion of our work we found that Microsoft Academic [1] independently also uses
a similar co-citation based metric.
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has been obtained using the Inspire API [21].2 This dataset will be used to measure model
performance between our six models.
The second dataset is created from a list of 8 influential papers and the corresponding
recommendations from four of our best performing models on the co-citation metric (SBERT,
Doc2Vec, TF-IDF and GPT-2) and MA. Each record contains (parent, recommendation),
and a relevance and novelty score as given by two Stanford physics postdocs and a University
of Chicago physics postdoc.3

4 Methods

In this section we describe the six different methods of obtaining document vectors. These
vectors will be loaded to Word2Vec with their arxiv id serving as the token. The recom-
mendations can then be easily obtained by gensim’s wv.most_similar. As elaborated in the
results section, the models in section 4.2 through 4.4 also use a cut-off TF-IDF similarity
score while providing recommendations.

4.1 TF-IDF & Doc2Vec

We utilise the implementation by gensim [22] of TF-IDF and Doc2Vec [23] to create em-
beddings for each paper. The abstracts are first preprocessed by lemmatization, stemming
and by removing capitalization, numerical factors, punctuation and stop words. As can be
seen from the results in figure 3, both TF-IDF and Doc2Vec have varying levels of success
and there isn’t a huge difference in performance. By construction, TF-IDF is better at
recommending papers based on specific key words while Doc2Vec is better at recommending
papers that are relevant even if they do not contain the necessary key words.
TF-IDF vectorization does not have any hyperparameter to tune while Doc2Vec requires
several hyperparameter and model choices. The two main methods for training Doc2Vec
are the distributed bag of words (similar to Word2Vec CBOW [24]) and the distributed
memory version (similar to Word2Vec Skip-gram). We trained a total of 20 models equally
split between CBOW and Skip-gram. The ten choices correspond to the choice in the
dimensionality of the vectors (200 vs. 300) and the window size (2, 3, 4, 5 or 6). We found
that the bag of words Doc2Vec model with a window choice of 5 and vector dimensionality
300 when run for 10 epochs gave us the best results for the co-citation metric. Running
for longer epochs such as 20 or 30 led to worse results. We haven’t exhaustively explored
window sizes beyond 6 and it is possible that our Doc2Vec implementation is not the most
optimal implementation.

4.2 Word embeddings using LSTM and a proxy task

Attention based bidirectional LSTM networks are often used in complex natural language
processing tasks such as machine translation, language modelling and etc. We use the LSTM
network shown in figure 1, and assign to it a proxy task of predicting paper titles based
on their abstracts with a categorical cross entropy loss. The actual goal of this task is to
learn better word embeddings. This is achieved by using a trainable Keras embedding layer
between the inputs and the first bidirectional LSTM layer. The document vectors can then
be obtained by applying an average pooling layer to the word vectors. Alternatively the
document vectors could also be obtained by averaging the hidden states A<t> or S<t>.4

We limit the length of the input and the output to be 155 words and 12 words respectively,
since this choice covers more than 95% of our dataset. We also use Word2Vec (with
continuous bag of words, window size 5, vector dimension 52 and epochs 1) to pretrain
our word embeddings before feeding them into the LSTM network. We experimented with
four LSTM networks based on the number (1, 2, 4 or 10) of bidirectional LSTM layers and

2Inspire is an open access digital library of high energy physics papers and citation counts. We
would like to thank Aarohi Oza for teaching me the Inspire API to obtain citations counts.

3We are grateful to postdocs R. Mahajan, R. Soni and E. Mazenc for providing this data.
4We would like to thank the TA Sherry Ruan for suggesting this idea to us.
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Figure 1: LSTM network with 2 bidirectional LSTM layers.

found that model performance worsens with more LSTM layers. We also noticed that longer
training or larger vector dimensionality led to worse results. See appendix A.2 for more
details about the FCC attention layer and plots of loss functions.

4.3 Word embeddings from fine-tuning GPT-2 and RoBERTa

We fine-tune the two famous transformer architectures, GPT-2 (medium) and RoBERTa
(base) on the hep-th abstracts corpus using the huggingface transformers library [25] in
PyTorch. The GPT-2 model is fined tuned using a causal language modelling task i.e. given
the set of tokens from 0 to i, the model tries to predict i + 1th token. RoBERTa is trained
using a masked language modelling task where the model tries to predict masked words in a
sentence based on the unmasked words. We mask 15% of the words while training and find
that the RoBERTa results are much worse than GPT2 or SBERT. A higher mask probability
might have given better results but we did not have the time to explore that unfortunately.
The document embeddings are obtained using three different ways. First by applying an
average pooling layer to the fine-tuned word vectors obtained from the zeroth layer of the
transformer. Second by applying an average pooling layer to the average of the last four
hidden states. Third by applying an average pooling layer to the concatenation of the last
four hidden states. To our surprise the first method provides better recommendations than
the more sophisticated second and third methods.

4.4 Sentence embeddings from fine-tuning SBERT

Sentence-BERT [19] is a Siamese (distil) BERT architecture that is extremely useful to find
meaningful sentence embeddings. It is trained on a pair of sentences labelled according to
their similarity with a mean-squared loss. We fine tune it on the hep-th abstracts corpus.
The sentence dataset is created using three different sets of sentence pairs. The first set
contains pairs that are formed by a sentence and its immediate neighbor and is given a
similarity score of 1. The second consists of a sentence and its next to immediate neighbor
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and is given a similarity score of 0.8. The third consists of a sentence and any randomly
selected sentence from the corpus and is given a similarity score of 0. The total dataset
consists of 1.1 million pairs with a split between the three sets given by 26%-26%-48%. The
document vector is then obtained by averaging the sentence vectors that appear in the
abstract.

5 Results and Discussion

Having obtained the abstract vectors we can obtain recommendations for any number of
papers using the cosine similarity distance. We ignore all recommendations that have a
TF-IDF cosine distance of less than 0.1, and provide 30 recommendations for every parent
paper. We propose three novel metrics to rate the quality of our recommendations. For any
given paper i they are defined as,

Normalized relevance ≡ nRPi = 1
N

N∑
j=1

ri,j , Normalized novelty ≡ nNPi = 1
N

N∑
j=1

ni,j ,

Normalized number of co-citations ≡ nCPi = 1
N

N∑
j=1

ci,j , whereN = 30. (1)

Here ci,j is the number of times the paper i and paper j are cited together. The number ri,j

measures the relevance of a recommended paper j to the parent paper i and is ranked on a
scale of 1 (completely irrelevant) to 5 (very relevant) by an advanced physics researcher. For
a given i and j if ri,j is greater or equal to 3 and if the recommended paper j is unknown to
the researcher, ni,j is marked 1. For all other cases ni,j is set to zero. nCPi serves as an
objective metric while nRPi and nNPi serve as a subjective but more meaningful metric for
paper recommendations.
We collect co-citation scores for 16 influential physics papers from the last two decades for
each of our 6 models and MA. The individual scores for each paper can be found in figure 3
in the appendix, here we only mention the average co-citation score 1

16
∑16

i=1 cCPi,

TF-IDF Doc2Vec LSTM RoBERTa GPT-2 SBERT MA
Average co-citations 18.19 16.17 7.21 5.28 12.44 13.87 127.80

MA is by far the winner in terms of co-citation. This is expected since MA by design [1]
maximizes the co-citation score. We believe that the average co-citation metric is far from
perfect and we need more human input. We collect the relevance and novelty score for 8
influential papers from 3 advanced physics researchers. We compare the best performing
models on the co-citation score with each other. The individual scores can be found in table
A.1 and we limit here to the average relevance score 1

8
∑8

i=1 nRPi and the average novelty
score 1

8
∑8

i=1 nNPi,

TF-IDF Doc2Vec GPT-2 SBERT MA
Average relevance 3.61 2.91 3.12 2.85 3.52
Average novelty 0.36 0.38 0.35 0.29 0.03

When relevance and novelty are taken in to account MA performs significantly worse than
our content based models. TF-IDF emerges as the most promising model when taken all
three metrics in to account. It benefits from the fact that scientific keywords are very specific
in their meaning and use. Nevertheless we believe that our work provides a proof of concept
that transformers are capable of providing state of the art results. Indeed, as shown in
appendix A.1, our fine-tuned transformers beat Doc2Vec and TF-IDF 34% of the time. We
believe that SBERT and GPT-2 when trained from scratch on entire papers will serve as the
new state of the art for scientific paper recommendation and we are excited to report on it
in the future.
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A Appendix

Figure 2: Houston, we have a problem...

A.1 Detailed results

In this subsection we provide the results dataset created with the help of Inspire API and
the feedback of 3 advanced physics researchers. Figure 3 contains 16 rows, one for each
paper, and 7 columns, six for our models and one for Microsoft Academic. We find that
our transformer architectures place first or second more than 34% of the time. Although
Doc2Vec and TF-IDF win 66% of the time, we believe that transformers hold a lot of promise
and are worthy of further investigation.

Figure 3: A list of 16 parent papers and the number of co-citations by each model. Green
corresponds to the highest number of co-citations while yellow corresponds to the second
highest. We do not include MA in this ranking scheme. The average co-citations are obtained
by summing the entries of every column, dividing by the number of non-zero rows i.e. 16 for
our models and 3 for MA, and finally dividing by the number of recommendations provided
by that model i.e. 30 for our models and 20 for MA. Thus for any given row i the entry in
the column calculate

∑N
j=1 ci,j where N = 30 for our models and N = 20 for MA.
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Table A.1 contains the relevance and novelty for 8 influential papers as judged by 3 advanced
physics researchers. Figure 4 contains the histogram of the relevance score of four of our
best performing models.

TF-IDF Doc2Vec GPT-2 SBERT MA
Verlinde et al. (136,13) (104,11) (64,2)
Kaplan et al. (88,11) (89,5) (78,1)
Dong et al. (107,8) (94,5) (65,0)
DSD et al. (102,11) (98,14) (67,0)
Maldacena et al. (88,10) (72,10) (87,0)
Faulkner et al. (76,9) (71,6) (62,0)
Hartman et al. (70,7) (79,10) (74,2)
Harlow et al. (115,19) (109,16) (74,2)
Normalized average (3.61,0.36) (2.91,0.38) (3.12,0.35) (2.85,0.29) (3.52,0.03)

Table 1: The (relevance,novelty) score for 8 papers. The normalized average is obtained first
by summing all the elements of a given column and diving by the number of non-empty rows
(4 for our models and 8 for MA), and further dividing by the number of recommendations
per parent paper of that model i.e. 30 for all our models and 20 for Microsoft academic.

Figure 4: Histogram of relevance as judged by advanced physics researchers.
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A.2 Loss functions

All our models are convergent and here we show the loss functions for our LSTM model and
GPT-2. The LSTM attention layer is made up of 3 fully connected layers with 155 (max
length of the input), 10 and 1 neurons respectively.
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Figure 5: Left panel : LSTM cross entropy loss. Note that the LSTM loss jumps from time
to time and it is crucial to stop at the right number of epochs. Right panel : GPT-2 cross
entropy loss.

A.3 Dataset and sample results

Figure 6 shows a few rows of our Pandas dataframe.

Figure 6: A few entries from the hep-th pandas dataframe.

The recommendations can be obtained by inputting Arxiv ids of one or more papers as
shown in figure 8. We can also use the embedding space to create a contextual search engine
as shown in figure 7.

Figure 7: Contextual search engine via better document embeddings.
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Figure 8: Paper recommendation using GPT-2
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