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We investigate the generation of 3D parametric scans from time-series 3D magnetic resonance
perfusion (MRP) images for ischemic stroke patients. Parametric scans are parameter maps for
metrics such as cerebral blood flow and time-to-max (Tmax), which are essential for possible life-
saving treatment of stroke patients. In this paper, we specifically generate Tmax mappings which
typically rely on expensive RAPID software using a variety of Convolutional Neural Network (CNN)
architectures. Constrained by a small dataset, we garnered successful results particularly by a 2-
Layered CNN. This work provides a valuable foundation with which to eventually create an open-
sourced and free platform for parametric mapping.

I. INTRODUCTION

We have been pursuing a deep-learning and computer
vision approach to use magnetic resonance perfusion
(MRP) imaging, also know as bolus-tracking MRI or per-
fusion weighted imaging to predict parametric perfusion
maps (including time of maximum value of the residue
function, time-to-max or tmax [5]). MRP is dynamically
acquired using MRI by injecting a contrast bolus into the
patient and repeatedly scanning the same image volume
30− 40 times over 3 minutes, generating a time series of
3D scans, or a 4D set of images. Typically, these scans
are fed into complex mathematical models to generate
parametric maps to assess the severity of stroke and se-
lect the patients to undergo therapy.

However, this mathematical modelling software,
RAPID, is very expensive and many hospitals cannot af-
ford it. Therefore, we hope to generate useful parametric
maps directly from the MRP without utilizing RAPID,
which has the potential to save lives by enabling more
hospitals to quickly predict key parametric maps in or-
der to better treat and stratify ischemic stroke patients
[1, 2]. An additional benefit of using deep learning for
generating parametric maps (in this case, we choose to
predict Tmax maps) is to avoid the need for arterial sam-
pling in patients during scanning (which is necessary for
the RAPID approach). Tmax is chosen since it has been
demonstrated to have the most clinical utility out of the
parameters computed by RAPID and is especially useful
in determining which stroke patients are good candidates
for thrombolysis, a potentially life-saving treatment with
many absolute contraindications, where treatment must
commence within hours of the stroke.

II. RELATED WORK

To our knowledge, no other groups have attempted
to use machine learning to directly generate parametric
maps for this application. However, there are related
studies in using machine learning for MRP imaging such
as using singular value decomposition deconvolution [4]

or machine learning based preprocessing [6]. Singular
value decomposition deconvolution is a good proof-of-
concept work, pointing towards the utility of such meth-
ods in a clinical setting, however more complex models
will certainly be able to improve results; in our project,
for instance, we plan to implement a U-net in order to
build off of some of these techniques. ML-based prepro-
cessing could be useful in the future in order to eliminate
having to separately preprocess data before input into
a model; instead, the raw data could be input directly.
However, it doesn’t actually accomplish the goal of what
we are trying to do, that is generate parametric maps
from the processed data.

RAPID is the state-of-the-art software method for au-
tomatically analyzing perfusion MR images, specifically
in the context of stroke imaging [7]. The resulting para-
metric maps can be produced within 5 minutes, giving a,
”...fast and reliable estimate of salvageable brain tissue
to help select patients for endovascular treatment.” The
major limitation to RAPID is the high cost of the soft-
ware itself. RapidAI, the platform offering RAPID for
perfusion MRI, also offers parametric mapping for stroke
using other imaging modalities, including CT, which tra-
ditionally has poorer soft-tissue contrast than MRI. The
’AI’ part of the platform indicates that deep learning is
involved in the software parametric mapping, however
groups have only used deep learning to extract other,
new information from the parametric maps generated by
RAPID [8]

The basis of our work is predicting a 3D image from
a 3D image in time series (4D image), an application of
dimensionality reductions. One other group at Stanford
has tackled a similar type of project, where they used
11 MR image series per subject to predict a PET image
illustrating cerebrovascular reserve [9]. In our case, the
PET image is analogous to a parametric map and the 11
separate MR image series are analogous to our 4D time-
series MR images. They used a two-dimensional encoder-
decoder with a U-Net architecture and 6-fold cross vali-
dation. While there are differences due to cross-modality
image prediction, the approach is still good and highly
appropriate to the project. Generally speaking, CNNs
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were fundamentally designed to handle imaging data and
thus are a great approach to begin. There is growing
application of deep learning approaches in medical and
neuro imaging [10] and our work builds off of it for MRP
imaging which has not been thoroughly explored.

III. DATASET AND FEATURES

Dr. Elizabeth Tong has provided a 45 patient
dataset of unlabeled healthy and ischemic stroke sub-
jects with 4D MRI perfusion scans and the associated
stack of ground-truth 3D parametric maps generated by
RAPID. The perfusion dataset for each subject includes
a (128x128x24) image volume acquired at 60 pre-defined
time points. In all, the input of one patient is a vector
of shape (128x128x24x60). The parametric Tmax map
comprises a (128x128x24) image volume per subject. The
24 channels represent the 24 different slice locations. So,
each patient’s input 4D MRI gets collapsed along the
time axis in order to generate 24 (128x128) images as
the output. Pixel intensity values range from 0 to 17199.
Higher pixel intensities indicate a higher likelihood that
this area of the brain is part of either the core or penum-
bra of the stroke region.

Each individual image is in the DICOM file format. Its
metadata contains information about that image such as
the patient ID, timestamp, slice location etc... which was
used to orient our data.

IV. METHODS

A. Preprocessing

We use Horos software to view and examine the im-
ages. We then load the DICOM images into two folders,
one for perfusion images (input) and one for Tmax maps
(target). Perfusion images were preprocessed by skull
stripping, using a threshold-based method set to 10%
in MATLAB, then normalized between 0 and 1. This
threshold value was chosen by trial and error after visual
inspection. A sample of the pre-processing pipeline re-
sult is shown in Figure 1 and the MATLAB scripts used
can be found in our github, linked below.

In the event of NaN values in the pixel data, a value
of 0 (same as background) was assigned. In the event
of missing DICOM files amongst the perfusion images,
as long as no one patient had more than 5% of its data
missing, substitute images full with zeros were inserted.

B. Model Description

Our strategy is to start simple, and slowly add com-
plexity to our models. Overall, we implement 3 Convolu-
tional Neural Networks using Keras. Each one contains

Figure 1. Pre-processing pipeline example. Top left shows
original image, top right shows pixel intensity histogram that
is thresholded to 10% for skull stripping. Bottom left shows
initial thresholded image, middle is image adjusted to fill
whole brain volume, and bottom right shows skull-stripped
image normalized to 0 to 1 pixel intensity.

Conv3D layers as we are convolving 4D patient data into
3D parametric map predictions.

The simplest model (Figure 2) consists of a single fil-
ter within a Conv3D Layer of size (1x1x1). The aim of
this implementation was to assess what the most basic
architecture could achieve. Importantly, filters of size
(1x1x1) were used so as to only collapse the channel (in
our case time) dimension, and not the size of the result-
ing images or number of slices. Next, we implement a 2-
Layered model (Figure 3), also containing solely (1x1x1)
filters that has additional keras defined BatchNormaliza-
tion layers. Batch normalization is highly recommended
in CNN architectures and helps regularize (to a small de-
gree) and speed up convergence. This model still has a
low complexity compared to the literature, and contains
1033 parameters.

Finally, a modified U-net architecture (Figure 4) is
implemented as an upper bound for complexity. This
model consists of 13,123,329 parameters and was inspired
by a model designed for brain segmentation located in an
open-source github repo [18]. The large advantage to U-
net architectures is that it permits the use of MaxPooling
layers to extract abstract features that collapse the im-
age dimensions. The U-net architecture collapses each
dimension before then building it back up in order to
output a 3D shape. The original U-net was configured
for 4D input to 4D output, and so we removed a max
pooling layer between the 4th and 5th convolutional lay-
ers, and changed the filter sizes of the 5th layer to (1x1x1)
in order to fit our 4D to 3D specifications.

C. Training Strategy

Due to time constraints and surpassing our allot-
ted Amazon Web Services (AWS) credit allowance, our
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Figure 2. 1-Layered 3D Model Architecture

Figure 3. 2-Layered 3D Model Architecture

hyper-parameter tuning remained limited. We chose the
Adam optimizer as it is popularly used, and a batch size
of 1 in order to increase generalization ability and re-
duce the computational load of our algorithm. All mod-
els were run within an EC2 Instance of type p2.xlarge at-
tached with a Volume of 16000(GiB) in AWS. Our models
were leveraged using CUDA in conjunction with a ten-
sorflow backend. Preprocessed images are passed into
our pipeline which automatically performs the hyper-
parameter tests and outputs a Results folder with the
scores of each run and prediction MRIs on the holdout
patient.

Models are all trained with a mean squared error
(MSE) loss function, the same as our evaluation met-
ric. Put simply, each predicted pixel value is compared
to its expected value and this difference squared is aver-
aged across all 24 brain slices in the output to evaluate
performance.

Of our 45 patients, 44 are chosen for the train/dev set
and a single handpicked patient (with a nice Tmax map)

Figure 4. Modified U-net Architecture
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is treated as the holdout test patient. The 44 train/dev
samples undergo 6-fold cross validation with the above
hyper-parameters to assess model performance. Then,
each variation is trained on the entire 44 train/dev set
and tested on the holdout patient to visually inspect re-
sults of each model against a consistent input.

V. RESULTS AND DISCUSSION

Table 1 shows the results of each model architecture
after 6-fold cross validation and with varying learning
rates at 25 epochs. The 2-Layered Network with a learn-
ing rate of 1e-3 performed the best (MSE = 203112),
although its MSE was comparable to the U-net architec-
ture (MSE = 214303). Figures 5, 6, and 7 show the
RAPID-generated ground truth map, the most success-
ful U-net result and the most successful 2-Layered Model
result respectively. Each visualization is performed after
training on the entire dataset except the holdout patient,
and then predicting the maps for said patient.

The results suggest that we are far from testing the
optimal model architecture. It seems as though both the
1-Layered and 2-Layered models did not yet converge,
and are underfitting the data. This is shown in part by
the fact that bigger learning rates outperformed smaller
ones and the 2-Layer model outperformed the 1-Layer
model. Thus, we predict that for each of these models, a
higher number of epochs would increase results, as well
as increased complexity generated from more layers. The
1-Layered model performed drastically worse than the
others.

MSE and visual inspection both confirm that the 2-
Layered model performed the best. Although visual in-
spection reveals that it has a low precision (since many
voxels were erroneously attributed a high Tmax value),
it is clear that the most important regions isolated by
RAPID similarly stand out in our prediction. This re-
sult is highly promising as not only did our model recre-
ate an appropriate brain shape, it has shown the ability
to extract features pertinent to Tmax selection.

The U-net has drastically more complexity but with
middling results. It succeeded at recreating brain images
but failed at distinguishing areas of specific interest. We
predict that adding dropout and batch normalization lay-
ers to our modified U-net would drastically improve its
outcome. As a model of higher complexity, it makes sense
that more tuning is necessary.

Both the U-net and 2-Layered model overly predict
Tmax importance of most voxels (the U-net being at
the extreme). This suggests that incorporating a loss
function that penalizes guesses that are ”too high” more
severely than ”too low” might be beneficiary. Moreover,
although the U-net and 2-Layered Model have similar
MSEs, it is clear that the 2-Layered Model outperformed
the U-net. This also points to needing a more sophisti-
cated loss function and evaluation metric.

Figure 5. RAPID-generated Tmax Map of Holdout Patient

Figure 6. U-net Generated Tmax Map of Holdout Patient

Figure 7. 2-Layer Model Generated Tmax Map of Holdout
Patient
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Table I. Model Results after 25-epoch 6-Fold Cross Validation
Runs

Model Learning Rate MSE
1 Layer 1e-5 162699887
1 Layer 1e-4 7046720
1 Layer 1e-3 3664168
2 Layer 1e-5 214097
2 Layer 1e-4 212887
2 Layer 1e-3 203112
U-Net 1e-5 214303
U-Net 1e-4 214270
U-Net 1e-3 214270

VI. CONCLUSION AND FUTURE WORK

CNN architectures have been shown to be an effec-
tive strategy towards parametric mapping that warrants
further research. Although the results in this paper do
not exceed alternative software, they represent a limited
data set (45 patients) and relatively minimal testing. A
2-Layered Convolutional Network with Batch Normaliza-
tion layers and 1033 parameters performed the best with
a MSE of 203122. Althouth the U-net has a similar MSE,
it is clear from visual inspection that the U-net is simply
’white-ing out’ the brain, instead of distinguishing Tmax
brain areas. This result highlights the limitations of us-
ing MSE as a metric. This work is still preliminary but
lays a solid foundation with which to eventually create
an open-sourced software that rivals RAPID in efficacy.

The most obvious next step is to increase the data size.
There are currently 1̃00 patients who are excluded due to
incomplete data-sets. We have already begun creating a
pipeline for including these patients which will increase
our data-set 3-fold.

Next, as mentioned, the hyper-parameter and archi-
tectural tuning was quite limited due to AWS credit con-
straints and time restrictions. Seeing as the 2-Layered
model performed the best, we suggest testing a host of
different architectures (between 2 and 12 layers) that in-
clude further regularization techniques like dropout lay-
ers on top of the batch normalization layers. Consider-
ing the results we have already garnered, it is likely that
with more tuning, the success of our models will increase
dramatically. It is also clear that the U-net architecture
could benefit from further regularization.

Tmax is but one parametric map that helps clinicians
treat ischemic stroke patients. We suggest that the same
pipeline be applied to other maps such as CBV (Cerebral
Blood Volume), and TTP (Time to Peak) to provide a
more complete analysis of the brain and stroke assess-
ment.

The CNNs implemented in this report are a naive
approach, that don’t include domain knowledge about
strokes, and perfusion analyses. Although we are con-
fident that further tuning will improve the CNN mod-

els, we also believe that combining CNNs with standard
mathematical modelling approaches has the best chance
at exceeding industry standards. A prime example is to
use mathematical modelling to isolate predictive brain
regions such as primary arteries and veins in the brain -
and then input these features into our models.

Last, although MSE has been a successful first pass,
the similarity between the U-net and 2-Layered models
highlight its limitations. We propose the use of clini-
cians to test new metrics such as the dice coefficient or
structural similarity index measure (SSIM) to improve
performance. Namely, our present results suggest that
precision needs to be emphasized in our loss functions.

VII. GITHUB

https://github.com/aaronsossin/CS230_Project
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