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Abstract

Atmospheric Rivers (ARs) are long, narrow plumes of water vapor occurring
globally and produce beneficial water supply but also destructive storms in mid-
latitudinal regions around the world. This study is an exploratory effort in the
nascent field of atmospheric river detection using deep learning. Building on the
recent ClimateNet [7] model and expert-labeled dataset, this study presents the
ClimateNet-Regional dataset and explores the capabilities of the CGNet context-
guided segmentation model for regional perspectives. Regional-trained perfor-
mance reaches a mean IOU of 0.5732, slightly exceeding the globally-trained
accuracy, on regional datasets. Moving forward, regionally-trained deep learning
models have the potential to improve the efficiency of these models and their
localized accuracy, with significant implications for extreme weather detection in

climate datasets.

1 Introduction
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Figure 1: Visualization of Atmospheric River event in
North-Eastern Pacific impacting U.S. West Coast on 11
Dec. 2014 from NASA.gov.

Atmospheric Rivers (ARs) are among a diverse
set of extreme weather phenomena, including
tropical cyclones (TCs) and tornadoes, that im-
pact regions across the globe. ARs are long,
filamentary corridors of moisture and winds in
the troposphere that can carry more than double
the flow of the Amazon River. AR events are
often responsible for significant precipitation
across the world and are uniquely capable of
both beneficial and destructive impacts depend-
ing on intensity—replenishing much-needed wa-
ter resources during drought, but also producing
catastrophic floods that can result in $1 billion
in damage [1]. In particular, California’s wa-
ter supply depends greatly upon ARs, which
provide up to 50% of annual precipitation [2].
Although AR research has emerged relatively

recently, within the last couple of decades, identifying and analyzing AR events has been crucial to
water resource management, especially as larger and more intense ARs are predicted as our climate
changes [3]. Because AR identification can vary depending on algorithm or human skill [4] (also
briefly discussed in [5]), deep learning has great potential to efficiently identify ARs in large climate

datasets.

More recently, many studies have been conducted to analyze AR regional impacts (such as North-
Eastern Pacific / U.S. West Coast in [5], South-Eastern Pacific / South American West Coast in [11]).
This study explores applying a deep convolutional neural network (CNN) to AR identification and
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segmentation on both global and regional scales. Inputs to the context-guided segmentation model,
derived from CGNet/ClimateNet, are “images” with 4 channels—rvertically-integrated precipitable
water (TMQ), zonal (U850) and meridional (V850) winds at 850mb, and sea-level pressure (PSL)—
along with labeled masks—O0, 1, 2 for Background (BG), TC, and AR classes respectively. Outputs
are predicted segmentation masks with class labels and event counts.

2 Related Work

Although deep learning applied to AR identification is in its early stages, there has been some progress
in recent years in experimenting with applications of deep learning to this space. AR identification
is often performed manually on small scales and by heuristics-based algorithms on larger scales.
The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) has been launched to
illustrate the vast variation in the different models and strategies for identifying these features in large
datasets and reports that different heuristics-based AR identification algorithms can differ by up to
an order of magnitude [4]. Thus, deep learning has gained momentum in the atmospheric science
community as supervised learning models can combine expert-level understanding of ARs and other
extreme weather events with deep networks’ abilities to learn and predict features of them.

One study [8] created a deep CNN based on AlexNet to classify extreme weather events. This
model contained just 4 learnable layers—2 convolutional, each followed by max pooling, and 2
fully-connected—and cited the lack of large labeled datasets. The model classified input images of
ARs, TCs, and weather fronts with a reasonably high accuracy (89-99%) but a notable training time
for AR classification of 6-7 hours for ~13,000 148 x 224 images. Climate data can be particularly
complex, so for more computationally-intensive tasks such as segmentation (this project, based on
[7]), it is important to keep this smaller-scale regional perspective in mind, even with a limited number
of training examples.

The lack of expert-labeled datasets, as well as the observation that different weather extremes can
have widely different characteristics, prompted the recent development of ClimateNet [7] based on
DeepLabv3+ [9], which has depth-wise separable convolutional layers, a pooling module with 2-D
pooling, Conv, batch norm, and ReLU layers, and an encoder to segment objects along with a decoder
to create the higher-resolution segmentation boundaries. [7] also compiled an expert-labeled global
dataset with a few hundred labeled examples—much fewer than may be in a typical deep learning or
computer vision dataset, but regardless posing a new opportunity for more precise AR localization
via segmentation. While the authors reported on a DeepLabv3+ implementation of ClimateNet in [7],
a version using the CGNet architecture [10] in PyTorch was released|to the scientific community for
further exploration. One of the primary differences between CGNet and DeepLabv3+, as suggested
in [10], is the “lightweight” characteristic of the former, and CGNet has relatively few layers (51) and
parameters compared to other segmentation models described in [9] and [10]. With a limited memory
and computational resources, this study leverages the CGNet/ClimateNet implementation in order to
study the application to region-localized AR events. (See Section 5 for additional CGNet/ClimateNet
details.) To build on ClimateNet, this study aims to create a new regional dataset based on the
ClimateNet set, understand the potential of a context-based segmentation model for AR identification,
explore the extension of these applications to both global and regional scales.

3 Dataset

While climate data has become increasingly available in recent years, challenges associated with
deep learning for extreme weather include the limited amount of expert-labeled data, the complexity
of atmospheric features, and the notably low subject-to-background ratio (ARs makes up a small
percentage of the overall image) [7]. Furthermore, a model for AR identification can take several
hours to train, compared to less than an hour for other weather events [8]. The ClimateNet dataset
was designed to address some of these issues; however, while high-resolution global climate data
provide an abundance of information for a model, it also requires considerable storage, memory, and
computational time (loading the 398 labeled global images for analysis from a local machine required
~12 hours, and training attempts exceeded the GPU computational budget for this course allocation).
By contrast, regional data can be more time- and space-efficient for training and evaluating models,
and many deep learning models are generally known to perform well even with lower-resolution
input images. Further, regional analyses provide in-depth views of AR impacts, so localizing ARs on
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Figure 2: Global water vapor input showing regions of NEPAC, SEPAC (solid), NPAC, SPAC (dotted) for new
ClimateNet-Regional dataset. Visualization created based on code from my previous research [5] and ClimateNet
analysis visualization code. NEPAC and SEPAC are 5350 x 4800 km, selected for their AR-prone location in
the mid-latitudes and ongoing research interests|in these areas. Since ARs are typically <1000 km wide and
>2000 km long, these regions can be suitable for containing most or the entirety of an AR.

a regional scale can be additionally beneficial as it is of particular interest to the broader scientific
community (see Section 1; [4], [11]).

Thus, this work presents ClimateNet-Regional, a regional dataset spanning four global regions (see
Fig. 2), based on the released ClimateNet dataset containing 459 labeled examples from the CAMS. 1
25-km resolution climate model. The data are formatted as NetCDF files, commonly used in climate
science, containing data for four atmospheric channels (described in Section 1), latitude and longitude
coordinates, and input labels, and outputs labels and segmentation masks associated with climate
events. The North-Eastern Pacific (NEPAC) and South-Eastern Pacific (SEPAC) images are 215 x 193,
and images centered around the North-Pacific (NPAC) and South-Pacific (SPAC) are 384 x 576. Due
to the limited amount of data, only training and validation sets (size 398 and 61 respectively) are used
in this study. These data are normalized with ClimateNet’s global mean and standard deviation for
the four channels when loaded into the model, although how these values were calculated by [7] is a
bit unclear. The new ClimateNet-Regional dataset is in the process of being made available.

4 Methods

The methodology in this study consists of three components:

1. Develop ClimateNet-Regional, a dataset derived from global CAM 5.1 output (as in [7])
that focuses on four carefully-curated regional snapshots of relevance to the AR research
community (detailed in Section 3; [4], [11]);

2. Apply the globally-trained CGNet/ClimateNet context-guided segmentation model to global,
NEPAC, and SEPAC data;

3. Explore possibilities for training model on regional NEPAC data, and fine-tuning and
evaluating performance on global, NEPAC, and SEPAC data.

Following the creation of ClimateNet-Regional dataset, this project validates the ClimateNet/CGNet
model on provided| global datasets, and regional applications are explored thereafter. The
CGNet/ClimateNet model, as per [10], considers surrounding and global context in carrying out
semantic segmentation of images.

Some notes about this study compared to the methodology in [7]: precipitation rate was used for [7],
but sea-level pressure (PSL) was included in the ClimateNet released dataset and is therefore used
in this project; the ClimateNet released dataset has a slightly different train-dev split (398-61) than
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Figure 3: CGNet/ClimateNet consists of 51 layers: 3x3 Conv (convolution followed by Batch Normalization
(BN) and Parametric ReLU (PReLU), a type of leaky ReL.U) layers in Stage 1, M=3 CG blocks in Stage 2, and
N=3 CG blocks in Stage 3. CG blocks contain a local feature extractor, surrounding context extractor, joint
feature extractor, and a global context extractor; the local (stanford Conv) and surrounding (dilated/atrous Conv,
similar to DeepLabv3+) extractors learn nearby context, feed into the joint extractor via concatenation, BN, and
PReLU, and is improve via global context extraction. After Stage 3, the result is passed through a 1x1 Conv
layer and upsampled to produce the segmentation mask prediction. Image from [10], modified for this study.

the train-dev-test split in [7] (422-18-19); finally, ClimateNet by design generates masks for both
ARs and TCs, and while ARs are the focus of this current study, TCs were also included in the model
training and runs for sake of completeness.

During training, which was performed using the NVIDIA Tesla K80 GPU on AWS, Jaccard
(Intersection-Over-Union, or IOU) Loss is calculated in order to learn image features and to yield the
IOU between predicted mask P and ground-truth mask G, and the model is trained until convergence
with early stopping to help combat overfitting due to the relatively small dataset size. The equation is
as follows:

_|PnG| IPNG]
~ |PUG| |P|+]|G|—-|PNG|

J(P,G)

Note J(P, G) measures IOU, so L(J) = 1 — J(A, B) is minimized. Adam|optimization was used
at each step, as it intersects the benefits of RMSProp and momentum and is generally regarded to
be computationally efficient. Finally, model hyperparameters including number of training epochs,
learning rate, and regularization, are tuned to suit regional and global AR identification for the NEPAC
box, with future goals of applications to other global regions included in the created ClimateNet-
Regional dataset. Training batch size (4) and validation batch size (8) were kept constant during these
hyperparameter changes.

5 Results and Discussion

The CGNet/ClimateNet model, pre-trained
on global data, was first evaluated on the

global, NEPAC, and SEPAC sets. It was 10U
found that the CGNet/ClimateNet results were m

comparable to those reported in [7] for  NEPAC validation on NEPAC-trained 0.5732

the DeepLabv3+/ClimateNet model, and the  Qpp T 1 G000 Global-trained  0.5476
globally-trained model performs relatively well

on the NEPAC data (see Appendix Table 2). . o
Table 1: Comparison of NEPAC mIOU after training on

Next, the model was trained on the regional global vs. regional data. Trained using 1 epoch with
NEPAC data. When randomly-initialized, the learning rate le — 3.

starting (learning rate of 0, 1 epoch) model train-

ing mIOU was 0.1875, and when initialized

from the global weights, increased to 0.4841 (along with a lower starting loss). Thus, remain-
ing experiments were conducted using this global weight initialization for training.

The mIOU was used as the evaluation metric for global, NEPAC, and SEPAC validation set per-
formance on the NEPAC training set after O (initial), 1, 5, and 10 epochs, with a learning rate of
le — 3 (chosen due to relatively small dataset). Table 1 shows the best mIOU (slightly higher than
the globally-trained regional accuracy) for NEPAC trained on NEPAC data.
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Fig. 3 suggests two main points: (1) the num-
ber of epochs does not greatly affect the global
and NEPAC accuracies, although (2) there do
appear to be increases in training performance
and slight decreases in validation performance,
particularly for global and NEPAC validation
sets, which suggests that the model may be
slightly overfitting to the NEPAC training data;
this would make sense because the model is
being trained on snapshots from the NEPAC re-
gion.

Additional experiments were conducted to de-
termine effects of epoch number, learning rate,
and L2 regularization on mIOU for global and
regional sets: 2 additional learning rates (le — 4
Figure 4: Training and validation mIOU for 0, 1, 5,and and le — 5) along with three levels of weight
10 epochs. Epoch “0” here refers to the state prior to  decay (0, le — 3 and 1e —4) and 1 and 5 epochs
training on the new NEPAC dataset. were tested (please see a subset of hyperparam-

eter experiments in Appendix Table 3). Results

do not appear to show significant improvement
with the weight decay term, although a learning rate of 1le — 5 may be too small to improve perfor-
mance, and mIOU results are affected by lower TC accuracy; additional ranges of hyperparameters
can be tested in future with more time.

Epoch

Qualitative Error Analysis: Ground truth vs. Predicted Masks (selected examples)
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Figure 5: Segmentation mask comparisons, ground-truth and predicted, for NEPAC region. Trained on NEPAC
in 5 epochs using learning rate le — 4 and weight decay le — 3, which had the highest NEPAC validation
performance (0.5498) for the Appendix Table 3 experiments. Even so: the 2013 prediction successfully matches
the AR trajectory—a crucial but difficult aspect of AR forecasting—but is ~2x wider than the ground-truth. The
2011 prediction is also wider, but both its shape and its trajectory differs from the ground-truth.

Fig, 5 illustrates why assessing predictions on regional datasets is particularly challenging. The new
ClimateNet-Regional dataset uses segmentation masks from the original global set, which can vary
(coarse in 2011 example, detailed in 2013); it is possible that with more precise expert labels on
regional images, accuracy may further improve.

6 Conclusion and Future Work

This work produces the ClimateNet-Regional dataset and modifies CGNet/ClimateNet to conduct
experiments to investigate regionally-trained model performance on global and regional datasets;
NEPAC-trained NEPAC performance peaked at mIOU= 0.5732, exceeding the globally-trained
accuracy on the regional set. Given more time and computational resources, I hope to build on
this project by exploring the following avenues: continue ClimateNet-Regional experiments on
additonal regions; regional dataset can allow more computational resources to be used for learning
AR “movies”; expand AR classification to include different types of ARs based AR scale [6]. It is
hoped that this work, along with the ClimateNet-Regional dataset, furthers the space of deep learning
applied to AR and extreme weather identification.
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Appendix

BGIOU TCIOU ARIOU mIOU

CN-Global  0.9389 0.2441 0.3910  0.5247
Global 0.9306 0.3344 0.3931  0.5527
NEPAC 0.9112 0.3978 0.3337  0.5476
SEPAC 0.8398 0 0.4445  0.4281

Table 2: IOU for global, NEPAC, SEPAC validation sets run on baseline
model pre-trained on ClimateNet global data. Results from ClimateNet
model (run on DeepLabv3+) shown for comparison (CN-Global). Mean
human expert IOU is ~0.5120 (according to [7]), so performance already
exceeds this for Global and NEPAC sets. mIOU performance on the
SEPAC data is not as comparable to those of the other three—no TCs
were found in the SEPAC set—but this is likely because it is smaller-scale
regional data.

Num Epochs LR  Weight Decay Train mIOU Global mIOU NEPAC mIOU SEPAC mIOU

1 le-4 0 0.4336 0.5249 0.5425 0.4445
1 le-5 0 0.4164 0.4991 0.5239 0.4298
1 le-4 le-3 0.4285 0.5226 0.5497 0.4330
1 le-5 le-3 0.4147 0.4967 0.5230 0.4273
1 le-4 le-4 0.4332 0.5256 0.5448 0.4425
1 le-5 le-4 0.4162 0.4989 0.5239 0.4295
5 le-4 0 0.4634 0.5248 0.5396 0.4462
5 le-5 0 0.4415 0.5162 0.5397 0.4439
5 le-4 le-3 0.4636 0.5145 0.5498 0.4409
5 le-5 le-3 0.4338 0.5099 0.5383 0.4395
5 le-4 le-4 0.4631 0.5239 0.5447 0.4451
5 le-5 le-4 0.4406 0.5154 0.5397 0.4433

Table 3: Subset of hyperparameter experiments with different learning rates, weight decay amounts, and epoch
sizes. NEPAC-trained model with initialization from globally-pretrained weights.
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