Real-time ASL to English text translation

Neha Keshari Anil Kumar Srikantham
Department of Computer Science Department of Computer Science
Stanford University Stanford University

nehakesh@stanford.edu asrik@stanford.edu

Gerardo Gomez Martinez
Department of Computer Science
Stanford University
ggomezm@stanford.edu

Abstract

With the recent progress on applying Deep Learning to natural language processing
and machine translation a portion of the population, those who are deaf, has
not been able to benefit from some of these advancements. Here we propose
a system that will enable this portion of the population to benefit from these
advancements. For our system, transfer learning is used to accelerate training and
improve results. Building on pre-trained models we were able to obtain a 25%
accuracy for translating ASL to English.

1 Introduction

ASL is one of the most popular sign languages around the world. It is used by around 500,000
individuals in the US and Canada. Very often most of the users, who are deaf and use sign language
as a means of communication, feel left out in a new environment because of the lack of common
communication medium. Sign language is a different language in that it can’t be spoken. If it can’t
be spoken, then it can’t be translated by any current language translation software. Hence we propose
ASL to English text automated translator which can help ASL users communicate in scenarios like
when they pay a visit to a doctor or participate in a conference.

There are existing models, including deep learning models that can convert ASL to English text. But
the efficacy of such models in real life is limited because the training data is usually on images that
cannot be scaled to real time scenarios.

2 Related Work

This project was inspired by the dataset and methodology suggested in the MS-ASL: A Large-Scale
Data Set and Benchmark for Understanding American Sign Language paper by Microsoft. We make
use of the dataset provided there with our own pre-processing to adapt it to our use. We use the model
and evaluation metrics suggested in the paper.

CS230: Deep Learning, Winter 2020, Stanford University, CA.

3 Dataset

We used the following dataset from Microsoft research.
https://www.microsoft.com/en-us/research/project/ms-asl/downloads

The dataset includes around 1000 classes covering around 25000 videos for train, validation and test
datasets. As suggested in the MS-ASL paper , we plan to use per class accuracy on the test dataset as
the benchmark.

Most of the videos have different signers which presented a challenge in terms of training the data.
Our model required us to capture ASL from different signers. This later translates to better real world
performance as its not fitted to a specific signer.

We have uniformly separated our data to ensure that the training, validation and test data sets come
from similar distributions. Since our dataset consists of videos with different signers and different
FPS values we have used this as a way to profile our dataset. Figure 1 shows the distributions in
respect to the different FPS values and the different signers in the video

Training Data FPS Validation Data FPS Test Data FPS

500 500

10 15 20 25 6 18 20 22 24 26 28 30 6 18 20 22 24 26
FPs FPs FPs

Training Data Signerld distribution Validation Data Signerld distribution Test Data Signerld distribution

12000 1600

2000
1400

10000

1200

8000 1500

o z 1000

g

g g
& 6000 g 00
g g
& &

g
£ 1000

500 400

200

o 20 40 80 100 120 30 0 60 70

40
signerld

60
signerld

Figure 1: Charts showing FPS and Signer ID of data used for training, validation, and test sets

4 Preprocessing

To train the model, we are using MS-ASL dataset. The dataset is essentially a collection of youtube
links to ASL videos. There is a total of 6452 distinct youtube videos. Each video can in turn have
multiple ASL words. The MS-ASL dataset had the start and end times and bounding box dimensions
for a word against each video file.

We took various preprocessing steps to get the right video for a sign. The dataset had videos with text
for the signal or additional unwanted space. For this we used a bounding box already present in the
dataset, to crop the videos. There were many videos with signs for more than one text, and required
to be trimmed by start and end time and separated for different signs. For this, we used the start and
end times provided in the dataset to be considered for each sign in the video. Based on these we
trimmed the videos as needed. We also converted these videos to frames in order to input them into
our network. We have used the image resolution of (224, 224, 3). Figure 2 shows the data processing
pipeline. Also, we did some data augmentation by shifting the width and height of the RGB images
by 0.2 scale. This was done to improve the validation accuracy. We have followed the same train,
validation and test sets distribution as we got from the MS-ASL dataset, which is 63% train/21%
validation/16% test . We have performed our analysis on a dataset with 200 classes.

https://www.microsoft.com/en-us/research/project/ms-asl/downloads
http://export.arxiv.org/pdf/1812.01053

Sign language video for EAT

v

Data Preprocessing
Q N Trim by start >
and end time
Sign video

RGB Frames

BEEEOUUEEEEEE

Convert to
Frames

Crop by
boundary box

Figure 2: Chart showing data processing pipeline

As a preprocessing step, we downloaded all the videos and next applied trimming and cropping
techniques using a ffmpeg library. After preprocessing below is the distribution of the video data

| Set | Class Count | Video Count |
Train 1047 10872
Validation 1017 3689
Test 1027 3560

Table 1: Dataset distribution after preprocessing

5 Methods

For the model, we are using the I3D RGB Inception architecture model that the MS-ASL paper
suggested. We used pretrained weights for the model. Our metric of evaluation during the training
process was the validation dataset accuracy.

With this approach, we believe we can make the ASL translation more adaptable and thereby have an
increased participation from ASL users with a real-world use case.

5.1 13D Model

Using video data adds an extra dimension when compared to just image data, this dimension also has
a temporal element associated with it. The I3D model is especially helpful for this sort of situation. It
takes elements such as filters and pooling layers from 2D model architectures and adds an additional
dimension to them. This allows using popular 2D model architectures in a 3D space.

We used the pretrained 13D Model training on 100 classes to start and later expanded to 200 classes.
We have used the pretrained weights from the I3D models in order to achieve higher accuracy with
our limited training data and have frozen all layers in the model except the last layer or 50 layers
where we have added our own layers to train on our data.

5.2 [Experiments

We used the pre-trained I3D model trained on Kinetics dataset and ImageNet. The pre-trained model
considers RGB channels to get spatial representations and has 185 layers. We replaced the last layer
with a Conv3D and softmax activation that can be configured to output the required number of classes.
Our metric of evaluation is validation accuracy. In all of our experiments, we trained the model for
50 epochs

Receptive field Receptive field
Video 7><11><11‘(T><W><Hi 7><27xz7‘(r><w><1~1)

et

Receptive field
23X 75X 75(T XW X H) Concatenation

Inception Inception Inception Inception v Inception
Module Module Module Module Module

Tx7x7
Conv
stride 2

Inception
Module

Receptive field
99 X 539 X 539 (T X W X H)

Inception Inception Inception
Module N Module Module

Receptive field
59 X 219 X 219 (T X W X H)

Predictions

Previous Layer

- /

Figure 3: I3D model architecture

5.2.1 Without Preprocessing
First, we trained the model without any cropping. The model did overfit to the training set with a

high train accuracy and very low validation accuracy. Figure 4 shows the results after using 0.5 for
dropout as a regularization.

epoch_accuracy epoch_loss

i 3
08 /

X}

DTraining
) 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 [l validation

Figure 4: Accuracy on raw data

5.2.2 Fine-Tuning Hyperparameters

As a second iteration, we trained the model by changing parameters for Adam optimizer with a
learning rate of 0.0001 with a decay of 1e-6. This improved the validation accuracy

5.2.3 Cropping Video

In the next iteration, we cropped the video to the bounding box dimensions as specified in the dataset
and trained the model. The gave a good boost to the whole validation accuracy. The validation
accuracy reached double digits of 0.14.

5.2.4 Fine Tuning Last Layers

Next instead of just training the model for weights on the last or the topmost layer, we froze the first
135 layers and trained on the last 50 layers. This improved the validation accuracy to 0.19.

5.2.5 Data Augmentation

As one last step, we tried augmenting the data by randomly shifting the frame by 20% on width and
height of each frame of the video. With this step, the validation accuracy improved to 0.25.

epoch_accuracy

epoch_loss

L
[Training
N W Vaiidation
Figure 5: Accuracy With data augmentation
Iteration Train 100 Acc | Val 100 Acc | Train 200 Acc | Val 200 Acc
No trimming and cropping 0.98 0.02 NA NA
Trimming and cropping 0.99 0.12 NA NA
Changing parameters for Adam 0.95 0.14 0.95 0.14
Training last 50 layers 0.95 0.19 0.99 0.18
Data Augmentation 0.96 0.25 0.9 0.22

Table 2: Accuracy results from different iterations

6 Conclusion and Future Work

I3D model is a good start for working on action based video datasets. We were able to iterate with
different approaches and achieved very good training accuracy. We did iterations to improve on
validation accuracy. The best approach, given the high training accuracy, is to apply data augmentation
techniques. We tried random shifts as augmentation and it improved the validation accuracy. By
working on this project, we were able to learn the complexities of processing video data for training
deep neural networks. Training such a large dataset is computationally expensive and a real challenge.

We would also like to enhance the model further by doing the following:

1. Train for all 1000 classes using a bigger machine considering 64 frames.

2. Try other data augmentation techniques like a random crop to improve on regularization of
the model.

3. We would like to use MediaPipe in order to enhance the real time translation of ASL to
English.

4. We would like to convert the model into ONNX format which offers interoperability.
https://onnx.ai/

5. Since we have ASL translated to English, for further translation natural language processing
models can be used to translate to different spoken languages. Since natural language
processing models are large and need large infrastructure the challenge is to get this working
on a mobile platform, in order to solve this, we would like to use TinyBERT model for a
real time scenario.

7 Contributions

We worked together in evaluating current similar approaches for ASL to English translation using
Deep Learning and finding a model that would work for our use case. Neha focused primarily on data
pre-processing needed before being able to feed into the model. Anil focused on training the initial
model that we used as a baseline model. Gerardo focused on logistics and aggregating the obtained
data into this report. Once we had the initial base model we worked together to optimize it.

8 Code

The code for our model and pre-processing scripts can be downloaded from: https://github.com
/gerardodekay/Real-time-ASL-to-English-text-translation/

https://onnx.ai/
https://github.com/gerardodekay/Real-time-ASL-to-English-text-translation/
https://github.com/gerardodekay/Real-time-ASL-to-English-text-translation/

References

[1] “EfficientNet-Lite.” GitHub, Tensorflow,
github.com/tensorflow/tpu/blob/master/models/official/efficientnet/lite/README.md.

[2] “MediaPipe Hands.” MediaPipe, Google, google.github.io/mediapipe/solutions/hands.
[3] “Open Neural Network Exchange.” ONNX, onnx.ai/.

[4] "Translating Sign Language in Real Time With AI" towardsdatascience.com/using-ai-to-translate-sign-
language-in-real-time

[5] “MS-ASL American Sign Language Dataset.” Microsoft Research, 5 Aug. 2019, www.microsoft.com/en-
us/research/project/ms-asl/downloads.

[6] "i3d keras" https://github.com/Oanalgnat/i3d_keras

[7] "Training a neural network with an image sequence" https://medium.com/smileinnovation/train
ing-neural-network-with-image-sequence-an-example-with-video-as-input-c3407£7a0b0f

[8] "Understanding the Backbone of Video Classification: The 13D Architecture” https://towardsdatasci
ence.com/understanding-the-backbone-of-video-classification-the-i3d-architecture-d
4011391692

[9] "TinyBERT: Distilling BERT for Natural Language Understanding" https://arxiv.org/abs/1909.103
51

[9] "Understanding the Backbone of Video Classification: The I3D Architecture" https://towardsdatasci
ence.com/understanding-the-backbone-of-video-classification-the-i3d-architecture-d
4011391692

[10] "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset" https://arxiv.org/pdf/17
05.07750.pdf

https://github.com/OanaIgnat/i3d_keras
https://medium.com/smileinnovation/training-neural-network-with-image-sequence-an-example-with-video-as-input-c3407f7a0b0f
https://medium.com/smileinnovation/training-neural-network-with-image-sequence-an-example-with-video-as-input-c3407f7a0b0f
https://towardsdatascience.com/understanding-the-backbone-of-video-classification-the-i3d-architecture-d4011391692
https://towardsdatascience.com/understanding-the-backbone-of-video-classification-the-i3d-architecture-d4011391692
https://towardsdatascience.com/understanding-the-backbone-of-video-classification-the-i3d-architecture-d4011391692
https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/1909.10351
https://towardsdatascience.com/understanding-the-backbone-of-video-classification-the-i3d-architecture-d4011391692
https://towardsdatascience.com/understanding-the-backbone-of-video-classification-the-i3d-architecture-d4011391692
https://towardsdatascience.com/understanding-the-backbone-of-video-classification-the-i3d-architecture-d4011391692
https://arxiv.org/pdf/1705.07750.pdf
https://arxiv.org/pdf/1705.07750.pdf

	Introduction
	Related Work
	Dataset
	Preprocessing
	 Methods
	I3D Model
	Experiments
	Without Preprocessing
	Fine-Tuning Hyperparameters
	Cropping Video
	Fine Tuning Last Layers
	Data Augmentation

	Conclusion and Future Work
	Contributions
	Code

