Improving Generalization Results for 3D Point Cloud
Data Reconstruction From 2D Images

Jaineel Dalal Rosie Yuyan Zou
jdalal@stanford.edu rosiezou@stanford.edu

1 Abstract

Being able to reconstruct 3D models from 2D images is an important problem with a wide array
of applications in Computer Vision and Robotics. In this project we investigate the application,
limitations and generalization results of current state-of-the-art 3D reconstruction solutions. We also
train with a different ground truth data pipeline and a novel point cloud consistency loss function
that builds up on the existing work on Self-supervised Shape and Pose networks for Reconstructed
Point Clouds in [1]]. With this approach, we tackle the data problem that is quite common in 3D
object reconstruction, by implementing a neural network architecture that can generate point clouds
from a single real image. Our proposed approach replaces the data generation pipeline and the 3D
loss function proposed in [1] with a custom ground truth pipeline and a novel 3D loss function
that is significantly impacted by an object’s geometric property. We were able to conclude that the
current state-of-the-art 3D reconstruction network, which employs a purely self-supervised approach,
does not perform well when evaluated against a ground truth point cloud data set with no uniform
density. We also identified flaws in the 3D loss function design presented in the baseline. Lastly, we
investigated the overall practicality of the baseline approach.

2 Prior Work

2.1 3D Reconstruction

Before deep learning, classic multi-view stereo algorithms relied on geometrical methods to formulate
and understand the projections from 3D to 2D space [2]]. Effective solutions either required multiple
images captured using accurately calibrated cameras or depth images captured using expensive
laser equipment, in tandem with a single camera to reconstruct 3D data. The classic stereo based
techniques described in [3]] for example, relied on matching features across images taken from slightly
different angles which may not be practical or feasible in several situations. Effectively, it can be
said that solving 3D reconstruction is a data problem where lack of good quality data can make it
difficult to generate a good enough representation. With the advent of deep learning, single image
based 3D object reconstruction methods have become increasingly popular. Early works on the same
focused on full 3D supervision using 3D voxels, meshes or point clouds [4]], [5], [6]]. However such
approaches still require large amounts of 3D data for training which can be hard and expensive to
obtain. Some of the recent works [[7]], [I8] have focused more on utilizing 2D multi-view images with
color and object silhouettes for effective supervised training. However, this still involves multiple 2D
views of the same 3D model along with the associated camera pose information at the training stage.
Applying such restrictions in a practical setting could be a problem when such supervisory data is
hard to obtain. In our implementation, we hope to use a semi-supervised approach which can work
with 2D images and their corresponding point clouds directly in 3D space.

3 Dataset

3.1 Representation and Dataset selection

3D data required for training purposes can be represented in several formats such as depth images,
point clouds, meshes and volumetric grids. We prefer point clouds for reconstruction since that
preserves 3D and geometric information without much discretization [9]]. Although, deep learning for
point clouds comes with its own set of challenges such as high dimensionality and an unstructured
problem [[10]], the field has been increasingly bolstered by the wide availability of public datasets for

CS230: Deep Learning, Winter 2020, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

Category CAD model Uniform sampling (baseline) | Area based sampling (ours)

Car

Car

Chair

Table 1: Different strategies for sampling 3D point clouds from a mesh model: Uniform sampling vs
Area based sampling.

3D models such as ShapeNet [11]], ModelNet [12], Kitti and ScanNet [14]). For our use-case, we
rely on synthetic datasets such as Shapenet [[11]] and ModelNet [12]] since they consist of a single
object in a 3D mesh and hence are easier to manipulate.

3.2 Strategy

3D mesh model from ShapeNet is sampled into 1024 points to generate a 3D pointcloud. We rely
on two sets of point clouds for both training and evaluation - one generated by the baseline and one
generated by our custom ground truth pipeline. The baseline approach performs random sampling
for 16k points on the surface of the object followed by farthest point uniform sampling to obtain
the final set of 1024 points. With each pointcloud containing a fixed number of points, this may
overrepresent smaller vertices and underrepresent larger areas. Owing to this, we designed our custom
groundtruth pipeline based on the work done by and [16]] for generating point clouds where
points are sampled based on the surface area of each triangular vertex in a given 3D mesh. This
results in better coverage for larger areas as evident from table[T] The input training images are also
rendered from the mesh model with a single random view per object instance. All experiments are
performed on two representative ShapeNet categories - Car and Chair. Following the training/test
split recommendation in and [18]], we split the ShapeNetCore_v1 dataset for both categories
roughly into two halves - 50% for training and 50% for testing. The number of models per category
ranges from 6.7k to 8k in the overall dataset.

4 Approach

4.1 Baseline Model

Detailed studies of existing literature showed one common approach - an encoder-decoder network
architecture design in conjunction with transfer learning. While our initial brainstorming phase
identified 3D-PSRNet [19]] and 3D-LMNet [20] as our baseline models, we concluded to use the
model presented in [[1] that builds upon the DIFFER model which itself utilizes 3D-PSRNet
as its baseline. This paper tries to address a shortage of pose and angle information in the training
data set which resonates very well with our original project motivation, owing to which we have
decided to look into both the theoretical aspects as well as the implementation of this baseline model
in order to come up with a design of our own.

4.2 Model Description

In our approach, we build on top of the self-supervised network design in [1]] and introduce our own
loss function, defined in[43] Note that the network was trained without the Pose Network due to
logistical challenges outlined in[4.4]

Figure 1: Baseline Model Architecture Design [[1]

Geometric Cycle Consistency Loss

Projection
Module

Point Cloud
Reconstruction

===

Image Consistency Loss

Point Cloud
Reconstructions

Consistency Loss

4.3 Loss Functions

* Baseline intuition

The overall baseline strategy consists of a two-fold network training process: one network
for point cloud reconstruction (N;...), and one for pose estimation (./\fpose). Total loss
function is a linear combination of both 2D and 3D discrepancy measures, with the influence
of each being gated by regularization hyper-parameters. As demonstrated in the baseline,
purely 2D-based loss functions could potentially lead to degenerate solutions where the
paired planar 3D reconstruction could optimize for zero loss by continuing to generate the
2D reprojections from a constant viewpoint. [1]] introduces a 3D-based Geometric Cycle
Consistency Loss (GCC Loss) to mitigate this problem that’s evaluated using the Chamfer
distance which denotes the distance between two point clouds.

k
ﬁgcc = ZdCh(PaPi)
=1

In our opinion, lack of ground truth and a self-supervised learning approach may not be an
optimal way to reconstruct from a 2D image. In baseline, the Chamfer distance is calculated
between a pair of point clouds in a pairwise manner and summed over all k reconstructions
of a given image where the first reconstruction acts as pseudo ground truth. There are two
key design flaws in this formulation: (1) Note that early-stage reconstructions are bound
to be inaccurate. Without ground truth data, the discrepancies between two inaccurate
reconstructions of the same image from different viewpoints make it hard for the network
to learn useful parameters in early stages. (2) Structural properties of the point clouds
are disregarded since all points are considered in the calculation of the Chamfer Distance.
Intuitively, for a point cloud reconstruction to be qualitatively accurate, not every single
point needs to be considered. Instead, it is more necessary for keypoints that outline the
overall shape of the object to be accurate.

K Random Octant Loss (KRO Loss)

In order to address the geometric structure and degeneracy problem with point clouds, we
propose a novel loss function that leverages both geometric and structural properties of 3D
objects. For a given pair of (Y;, G;), where (Y;) is the ground truth 3D point cloud of the
i-th observation and G is the generated point cloud, perform the following steps on both Y;
and Gj:

Draw a positive integer k from unif(1, max_k) where maz_k is a hyper parameter
that can be tuned.

Get the volume occupied by the object, and divide each axis into k equal segments.
Note that there is no need to calculate volume during computation. This step will give
us k> equal-sized octants.

Find the geometric center of each octant and the point cloud closest to it. We call it the
(@)

J

Find the geometric center of the object and the point cloud closest to it. We call it the
center point ¢(*)

anchor point a

Our objective is to minimize

2

m kS
Loro = 3 Dy =D, where D' = Y [l =9
i=1 j=1

¢ Final Loss Function
The final loss function is a linear combination of component loss functions proposed in the
baseline and the KRO Loss function proposed in[4.3] More detailed definitions of image
loss (L) and mask loss (L) can be found in the baseline paper [1]].

L=a(lr+ L)+ BLyec + ALlkro

4.4 Experiments

Baseline model was trained for roughly 400k iterations for each of the three object categories - car,
chair and plane. Due to time and hardware constraints, we limited ourselves to training uptil 9k-18k
iterations for two object categories - car and chair with and without KRO loss. We also ran into several
data dependency issues in the baseline implementation and had to work our way around missing pose
and mask data. With pose information missing, we switched off PoseNet which in turn also provided
valuable data for ablation study since we could concentrate our efforts solely on the performance
of the reconstruction network. Table [2] describes our experiments for the same. All experiments

Experiment number | Category | Num iterations | With/Without KRO loss
1 Cars 18k Without
2 Cars 18k With
3 Chairs 9k Without
4 Chairs 9k With

Table 2: Ablation study with number of training iterations and novel KRO loss function

involving KRO Loss were performed with and without our custom GT data. For experiments without
GT data, the self-supervised baseline approach of "pseudo ground truth" reprojections was used
instead. Additionally, we also evaluated the intermediate models against the baseline ground truth
data as well as our version.

4.5 Observations
Observations made after running experiments 1 and 2 from table 2}

1. While evaluating point clouds against pseudo ground truth, KRO Loss generates numeric
issues (NaN errors after epoch 1) without a multiplier suggesting that the network was
becoming unstable during learning right after the first iteration. The similar 3D-based loss
function GCC loss, does not have any such issues with an initial A value of 10000. The
numeric issue got resolved after multiplying KRO Loss with the same A. Both losses show
zero loss upto the 4th decimal place. However, multiplying the loss values by 1000 before
printing and modifying the string format to display upto 12 decimals confirmed that as
expected both loss values were indeed non-zero, just extremely small.

2. When evaluating point clouds against our ground truth, introducing KRO loss makes
the overall loss values grow at an exponential pace, to a point where it triggers floating
point value overflow and slows down the training process significantly. We encountered
this problem while running Experiment 2, so we decided to halt the program at around
iters = 40, complete Experiment 3 and forgo Experiment 4.

4.6 Results

* During training, while it appears that KRO loss has a slightly decreasing trend, as shown in
Figure[5]in Appendix, the nominal value remains very high when evaluated against ground
truth data. This makes sense because in a purely self-supervised network, early stages of
the renderings will be highly inaccurate. Hence, evaluating an inaccurate rendering against
another equally inaccurate rendering would yield seemingly high loss values. This would
also explain why the initial \ for GCC loss was set to 10000 in the baseline. Simultaneously,
this also proves that even with a high A, 3D-based loss functions are not as useful without
ground truth data.

Total loss over iterations for cars

s

o

105

10.0

85

9.0

85

BO T T T
2000 4000 6000

8000 10000

12000 14000

16000

18000

Figure 2: Total Loss Over Epochs for Cars, without KRO Loss

Model Type | Chamfer Distance | Fwd Distance | Bwd Distance | Epochs Trained | GT Type
Car 19.287 15.057 4.230 28k Baseline
Car 72.508 66.881 5.627 28k Ours
Chair 22.362 4.238 18.124 9k Baseline
Chair 29.902 5.255 24.647 9k Ours

Table 3: Evaluation Summary Table, showing both Chamfer Distance and its component values
(forward and backward distances) evaluated against both the baseline and our own ground truth point
clouds. We were able to train the car model for another 10k epochs after our initial experiment design.

* The above point is further supported by observing the output at training time. We plotted the
intermediate point cloud reconstructions and observed that the reconstructed 3D point cloud
data points are highly inaccurate and scaled down. This results in near-zero values in 3D loss
calculations (both for GCC and KRO loss functions). However, symmetry loss is unaffected,
due to the fact that it is a calculation based on the object itself and is not a property of the
reconstruction. This leads us to believe that the timing of evaluating 3D-based loss functions
should be more carefully studied.

* Evaluation of the intermediate baseline models yield worse metrics when compared with our
custom ground truth point clouds, which we believe to be a more realistic density estimate
compared to the near-uniform sampling provided by baseline.

4.7 Conclusions

¢ 3D-based loss functions are not useful in early stage training

This conclusion is supported by our observation of near-zero 3D geometric cycle consistency
loss and KRO loss values in early iterations. We verified that the loss values were in fact
non-zero, when we multiplied them by 1000 before printing them out to 12 decimals. This
was further validated by plotting early-stage point cloud renderings. Even though the point
cloud data was normalized and scaled, the rendered point clouds appear to be a 2D cluster
with no defined geometry, with coordinates being as small as micrometers thereby pointing
to a potential degeneracy during early stage training.

* Practicality of purely self-supervised network As shown in the evaluation of various
model types, a purely self-supervised network performs poorly when evaluated against
our non-uniformly distributed ground truth point cloud. Additionally, the training process
requires a large number of epochs (upto 400k iterations with extremely small learning rate
(5e-4) for training on a single object category. Given that the set of observable objects is
virtually of an infinite size when geometry is considered, the baseline approach does not
generalize well.

4.8 Future Work

Since we turned off Pose Network portion of the baseline model for our training, we are inclined to
learn how the early-stage intermediate models will be affected with the same, with and without KRO
Loss function (evaluated against both GT and Pseudo GT). This will allow us to fully understand the
efficacy of the standalone Pose Network block. In addition to the current formulation of KRO Loss,
we would also like to explore a second variation, where instead of partitioning the axes in k equal
sizes, the entire volume is partitioned into k& randomly sized volumes. This second variation could

also have a regularization term that uses angle information, 9;1;)3,72, where () represents the angle
between the i-th anchor point and the center point for each random octant.

4.9 Contributions

Jaineel Dalal developed the end to end ground truth generation, data augmentation and the visualiza-
tion pipeline . Rosie Zou developed the KRO loss function and evaluated performance with baseline.
Both of them spent countless nights fixing code and missing data from the baseline implementation.
Both contributed to reproducing results and writing proposal, milestone and the final report.

4.10 Acknowledgement

We would like to thank Jo - our project TA for his timely insights and help with our data reconstruction
and training pipeline. We would also like to acknowledge our families for their continued support
over the past few months while we focused on managing our work duties along with part-time studies.
Thank you for your support and patience.

References

[1] K L Navaneet, Ansu Mathew, Shashank Kashyap, Wei-Chih Hung, Varun Jampani, and
R Venkatesh Babu. From image collections to point clouds with self-supervised shape and pose
networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[2] Xianfeng Han, Hamid Laga, and Mohammed Bennamoun. Image-based 3d object reconstruc-
tion: State-of-the-art and trends in the deep learning era. IEEE transactions on pattern analysis
and machine intelligence, 2019.

[3] Richard Hartley and Andrew Zisserman. Two-View Geometry, page 237-238. Cambridge
University Press, 2 edition, 2004.

[4] Rohit Girdhar, David F. Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a predictable
and generative vector representation for objects, 2016.

[5] Haoqgiang Fan, Hao Su, and Leonidas Guibas. A point set generation network for 3d object
reconstruction from a single image, 2016.

[6] Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2:
A unified approach for single and multi-view 3d object reconstruction, 2016.

[7] Rui Zhu, Hamed Kiani Galoogahi, Chaoyang Wang, and Simon Lucey. Rethinking reprojection:
Closing the loop for pose-aware shapereconstruction from a single image, 2017.

[8] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspective transformer
nets: Learning single-view 3d object reconstruction without 3d supervision, 2017.

[9] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. Deep
learning for 3d point clouds: A survey, 2020.

[10] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. CoRR, abs/1612.00593, 2016.

[11] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo
Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University — Toyota Technological Institute at
Chicago, 2015.

[12] Kashi Venkatesh Vishwanath, Diwaker Gupta, Amin Vahdat, and Ken Yocum. Modelnet:
Towards a datacenter emulation environment. In 2009 IEEE Ninth International Conference on
Peer-to-Peer Computing, pages 81-82. IEEE, 2009.

[13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The
kitti dataset. The International Journal of Robotics Research, 32(11):1231-1237, 2013.

[14] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Niefiner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017.

[15] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation, 2017.

[16] David Stutz and Andreas Geiger. Learning 3d shape completion from laser scan data with weak
supervision. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, 2018.

[17] KL Navaneet, Priyanka Mandikal, Varun Jampani, and R Venkatesh Babu. DIFFER: Moving
beyond 3d reconstruction with differentiable feature rendering. In CVPR Workshops, 2019.

[18] Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri. 3d
shape segmentation with projective convolutional networks, 2017.

[19] Priyanka Mandikal, K L Navaneet, and R Venkatesh Babu. 3D-PSRNet: Part segmented
3D point cloud reconstruction from a single image. In 3D Reconstruction Meets Semantics
Workshop (ECCVW), 2018.

[20] Priyanka Mandikal, KL Navaneet, Mayank Agarwal, and R Venkatesh Babu. 3d-lmnet: Latent
embedding matching for accurate and diverse 3d point cloud reconstruction from a single image.
arXiv preprint arXiv:1807.07796, 2018.

Appendix A

Total loss over iterations for cars, iter < 9000 Total loss over iterations for chairs, iter < 9000

(a) Cars (b) Chairs
Figure 3: Total Losses over Epochs for Cars and Chairs, without KRO Loss

2D, Mask, and Poss loss over iterations for cars, iter < 9000 2D, Mask, and Poss loss over iterations for chairs, iter < 9000

(a) Cars (b) Chairs

Figure 4: Partial Losses over Epochs for Cars and Chairs, without KRO Loss

K-Octant loss over iterations for cars with K-Octant Loss

Figure 5: KRO Loss Over Epochs for Cars

Appendix B

Hyper-parameters used for training

* Reconstruction network architecture overview (structure only)

4 CNN layers.

4 FC layers.

Filter size: 3x33, stride of 2.

ReLU activation for all layers except the last FC layer which has Linear activation.
L2 regularizer.

* Training

- gpu=1

— dataset = shapenet

— 3d loss type = init model

— categ = car, chair

— loss = bce

— affinity_loss (enabled)

— optimise_pose

— lambda_ae = 100

— lambda_ae_mask = 100

— lambda_mask_fwd = le-4

— lambda_mask_bwd = le-4

— lambda_3d = 10000

— lambda_ae_pose = 1

— lambda_mask_pose = 1

— lambda_pose =1

— number of random projections = 4

— iterations = 28000

— k_random_octant_loss (enabled and disabled, for stratified testing)

— use_gt_pcl (enabled and disabled, for stratified testing)

— num observations = 50% of total available observations

— Optimizer: Adam Optimizer with 0.0005 learning rate

— Optimization algorithm: Mini batch gradient descent with batch size of 2
 Testing

— num points in point cloud = 1024

— num observations = 50% of total available observations

— Optimizer for computing Chamfer distance: Adam Optimizer with 0.001 learning rate

— eval metric: Chamfer distance

	Abstract
	Prior Work
	3D Reconstruction

	Dataset
	Representation and Dataset selection
	Strategy

	Approach
	Baseline Model
	Model Description
	Loss Functions
	Experiments
	Observations
	Results
	Conclusions
	Future Work
	Contributions
	Acknowledgement

	Appendix A
	Appendix B

