
Ga Yau: Machine analysis of Hong Kong horse racing
data

Olaf Torné
otorne@stanford.edu

Abstract

We present a horse-race forecasting model that utilizes a set of carefully selected
features, encoding expert domain-knowledge on how to select a winning horse. A
tunable labelling scheme is introduced that significantly improves model accuracy.
Intuition is given on the relationship between feature-selection and network depth.
This model builds on prior works by introducing all of the above, as well as
considering a multi-horse softmax framework instead of the more common single-
horse sigmoid forecasters.

1 Introduction

This project explores the usage of neural-networks and feature-engineering to analyse data of horse-
races organized by the Hong Kong Jockey Club (HKJC), and make forecasts.

Why Deep-Learn horse racing? It is a challenging problem to make accurate forecasts of horse-race
results:

1. Only some of the potentially determining features are publicly available

2. A horse-race is reasonably close to a random event 1

Nevertheless, the past-history of races is available and it’s a known fact that outcomes are not
completely random but also depend on factors observable in the past history. Therefore horse-racing
is a promising candidate for machine learning analysis.

We consider two models: firstly, a hand-engineered features model (DH_v1) which is analysed in full
detail. Secondly, using insights gained on the hand-engineered model, we offer some motivation and
preliminary analysis on constructing an end-to-end model (DH_v2). A key insight of this project
has been to understand how each approach leads naturally to a different network architecture, and
analyse benefits and limitations of either approach in the context of horse-race prediction.

Hand-engineered features DH_v1. The general recipe is as follows:

1. Raw data is a set of past-race tables X(i)
raw, i = 1 . . .m, where rows are horses in the race,

and columns are features describing the properties of that race (horse, jockey, distance etc,
as well as the order of arrival of each horse at the finish)

2. Hand-engineered features, based on expert domain-knowledge and encoding past-
performance, are added as new columns

1One reason for this is the race manager handicaps each horse by adding metal weights based on the horse’s
current ranking in a deliberate attempt to equalize the horses chances

CS230: Deep Learning, Winter 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



3. After adding the new high-level features the identities of horses/jockeys/trainers are dis-
carded

4. Fit a fully-connected neural network to the data

5. The fitted model takes as input a new race table, and forecasts which horse will win

Discarding the identity of participants in the race means the model learns the features-to-results
mapping, but does not learn about the past performance of any specific horse. This is not a significant
limitation in itself because the population of horses changes over time, and occurrences of the same
horse are relatively sparse. On the other hand it implies the model has limited scope to learn new
general past-performance features. This is potentially a more serious limitation and in section 3
we supply an example of an expert decision rule that is not captured by our set of hand-engineered
features.

The main benefit of the horse-identity-agnostic approach, beyond that it works well in practice, is
that it leads to a simple model architecture. Indeed, the input has shape (m, 14, 33) and can easily
be approached using a fully connected network. Several published works consider a similar set-up
based on horse-agnostic high-level features (Bolton et al. (1986), Chen et al (1995), Pudaruth et al.
(2013)). Nevertheless this project introduces some incremental novelty:

• A much larger set of sophisticated features derived from expert domain knowledge

• A much larger training set

• Analysis of NN versus public odds benchmark

• Multi-horse/softmax forecasting model, as opposed to single-horse/sigmoid forecasting

• Tunable loss / labelling system to achieve higher accuracy

Moreover, three interesting discoveries were made:

1. DH_v1 handily outperforms public odds and random selection benchmarks

2. Good accuracy is achieved with a shallow fully-connected network and does not improve
significantly with increased network size

3. Higher accuracy is achieved by tuning the loss to favor 1st, 2nd, 3rd place (via labelling)

Intuition for 2. is that the hand-engineered features are already sufficiently rich to encode much of
the information that determines a race outcome and can be exploited as such by a simple network.
Moreover, because horse-identity is discarded, the model has no scope to learn complex dependencies
across different races, where a deeper network might outperform. To illustrate, consider this empirical
fact:

If a horse won its last race on identical distance and track-type, it has a greater
chance of winning the current race.

The premise is already represented in the feature horse_dist_course_rec_1 (encoding previous
result on same distance/track), so it can conceivably be exploited even by a linear boundary. On the
other hand, it is impossible for even a very deep network to learn this fact on its own, and adding
network complexity does not affect this.

Discovery 3. is also intuitive: tuning the loss function to reward not only correct 1st place predictions,
but also 2nd and 3rd, helps it to converge to a model that has better accuracy, even when the final
model is just applied to selecting 1st place.

End-to-end DH_v2. Given the observations above, it is natural to consider an alternative approach
that supplies raw data Xraw, including horse/jocky identity but omitting hand-engineered features,
to a deeper network to discover if it can effectively learn high level features itself. Due to time
constraints and a greater initial focus on DH_v1, we did not bring DH_v2 to full-fruition. However
we offer some insights into where are the difficulties, in particular related to problem dimension, and
also describe a general approach to this model.

2



2 Related work

Single-horse, horse-agnostic frameworks, with feature engineering. Several prior works (Davoodi et
al (2010), Pudaruth et al. (2013), Williams et al (2008), Chen et al (1995)) build a model that takes
a single horse as input, described by a number of hand-engineered features, and forecasts if that horse
will win independently of the other competitors. These works consider datasets of a few hundred
races, and use less than 10 features. Numerical results are not comparable across publications due
to significant differences in race modalities. Multi-horse, horse-agnostic framework with feature
engineering. Bolton et al. (1986) considers a multinomial logit model to capture the win-probability
of all horses participating in a race, and includes a methodology for data augmentation by considering
sub-races. The dataset is hand-assembled and contains 200 races and 10 simple features. Weights are
shared across horses leading to a parsimoniously specified model. This paper was a great inspiration
for this project. In particular the architecture we present can be viewed as a generalization of the
Bolton-Chapman model to a fully-connected dense network with 33 features. Multi-horse framework
with end-to-end approach. The graduation thesis Wong. (2018) looks at a simplified end-to-end
model where horse identities are discarded, but other categorical features such as jockey and trainer
are retained, and only a very limited number of hand engineered features are added, with minimal
encoding of past-performance data. This model is conceptually interesting but has the limitation that
horse-identity is the most important feature in an end-to-end approach.

3 Dataset and features

3.1 Raw data

Raw data was acquired from SPP (2021). The data comprises 12820 races from 2003-2020. The raw
data is supplied in three tables corresponding to horse, track, jockey and trainer features. These are
aggregated into a single table Xraw : rows are the participants in a race; columns are features. An
example of Xraw is given in the Appendix.

3.2 Discussion of the feature-engineering route

A raw race-table Xraw only contains information about the current race (e.g. distance, horse-names
etc). Past-performance is then encoded using hand-engineered features. This approach has several
advantages:

1. Readily available expert-advice about which features are relevant (see HKJC (2021))
2. Cost of translating expert-advice into quantitative features is not negligible, but it was

deemed acceptable
3. Results in simple, uniform tabular inputs
4. Relatively shallow network, as high-level features are pre-supplied.

3.3 Feature-engineering detail

The HKJC publication Racing 201: How to pick your winning horse HKJC (2021) gives expert
advice for selecting a winning horse. The feature-engineering stage translates a subset of this advice
into numerical features. For illustration:

• horse_dist_course_going_rec_1 Most recent finishing position of the horse on identi-
cal distance, track-type and track-conditions

• trainer_dist_course_going_rec_1 Most recent finishing position of any horse by the
same trainer, on identical distance, track-type and track-condition

The horse, jockey and trainer’s identities are used to derive past-performance features, then they are
discarded. In total 33 features are used per horse. The full list of hand-engineered features is supplied
in the Appendix. Lastly, races with less than 14 horses are padded to have a uniform 14 rows. A
single input to the model therefore has shape:

Input.shape=(·, 14, 33).

3



3.4 Train/Dev/Test split

The distribution of races is expected to vary over time. Indeed, the population of horses, jockeys
and trainers evolves; HKJC rules or handicapping methodology may change; Horse performance is
sensitive to climatic conditions which may vary systematically. Moreover, we are only interested
making forecasts about future races. Therefore we first split as follows:

1. Dev/Test sets are drawn from the 2 most recent seasons (2018-2019/2019-2020)
2. Training set is drawn from the earlier seasons 2003 through 2018

Once this split is done, examples can be drawn in a standard way, including by random sampling.
This is not a problem because the model only makes forecasts within a current race example using
it’s own set of features, and does not model across chronologically related race examples.

4 Methods

4.1 Architecture

Input: A single input example for DH_v1 is a matrix R representing all the participants in a single
race. Rows are horses and columns are features. The shape is (nh = 14, nf = 33).

Output: A probability vector p, of length nh, where pi is the probability horse i will win .

Architecture: DH_v1 is a fully-connected network with standard architecture:
R→ Flatten → Linear → Relu → · · · → Linear → Relu → Linear → Softmax

After tuning, the parameter combination chosen is two hidden layers with 60 units each, and a dropout
probability of 0.5. There are 32,534 trainable parameters.

4.2 Labelling and loss function

We use custom labelling, as opposed to one-hot, to capture that assigning a high win-probability to a
horse that ends in second or third place is still a good result. To this end, define three hyperparameters:

pwin, psec and pthird

such that pwin + psec + pthird = 1. The label associated to an input example R is ytop3: all
entries are zero except for horses in first, second and third place, who are assigned pwin, psec and
pthird respectively. See Figure 1. The standard tf.softmax_cross_entropy_with_logits loss
function is used. After tuning, values pwin = 0.5, psec = 0.25 and pthird = 0.25 were retained.

4.3 Benchmarks and evaluation metrics

The model is compared to two benchmarks:

• Uniform Model (UM): randomly pick a horse. As the number of horses per race varies, the
expected accuracy needs to be calculated explicitly by summing the expected accuracy of
each race.

• Public Odds (PO): in the pari-mutuel system, betting odds directly reflect the amount
wagered on each horse and thus supply an implied value for the public’s estimate of winning
probabilities.

We consider the standard accuracy metric, and also top-3 that counts success if our highest-win-
probability horse ends in 1st, 2nd or 3rd place.

4.4 Limitations of feature-engineering and discussion of end-to-end approach

Using hand-engineered features results in forecasts that are significantly more accurate than the
benchmarks, thus validating this approach. Nevertheless, this approach has limitations as some
documented expert-advices are not captured by our set of hand-engineered features, and the model
has little scope to learn new high-level features based on past-performance. The appendix contains a
more detailed analysis.

4



Figure 1: Left. Loss function convergence.Right. Custom labelling.

Figure 2: Left. Accuracy and top-3 metrics. DH_v1 is the vanilla labelling model, and DH_v1 .5 .25
.25 uses tuned labels Right. Forecast agreement between DH_1 and PO models.

5 Experiments and results

The fitting process of DH_v1 converges as shown in Figure 1. This example uses standard labelling
with pwin = 1.0, psec = pthird = 0. Similar qualitative results are obtained with tuned labels.
Accuracy and top-3 metrics are displayed on the left of Figure 2. The tuned model DH_v1 pwin =
0.5, psec = pthird = 0.25 outperforms significantly. The right of Figure 2 compares forecasts made
by DH to those made using public odds: in the test set the winning horse forecast matches in only
6.7% of cases.

6 Conclusion and future work

This project presents a horse-race forecasting model with the following characteristics:

• Multi-horse softmax framework

• Rich hand-engineered feature set

• Horse-identity agnostic framework

• Tunable labelling scheme

The model is demonstrated to significantly outperform the random-selection and public-odds selection
benchmarks. Detailed intuition is given about why the model performs well even with a shallow
network architecture, and why the tunable loss/labelling scheme gives rise to better accuracy even
when the final model is used to predict 1st place. Lastly, it offers a candid discussion about model
limitations, in particular the inability to learn new past-performance based features, and a discussion
of how to potentially remedy this limitation in future iterations.

5



Figure 3: Example of raw input data for one race.

Figure 4: Engineered features.

Appendices
A Input data

An example of raw input data is in Figure 3. The set of engineered features in DH_v1 is in Figure 4.

B Discussion of end-to-end approach

Using hand-engineered features results in forecasts that are significantly more accurate than the
benchmarks, thus validating this approach. Nevertheless, this approach has limitations as some
documented expert-advices are not captured by our set of hand-engineered features, and the model
has little scope to learn new high-level features based on past-performance.

To illustrate, consider the decision rule in Figure 5. Our set of features contains the carried-weight
change d_actual_weight and most recent performance horse_rec_1 corresponding to the first
and third columns, but no information about class change. Therefore it is impossible for the model to
learn this rule. An alternative approach is to transform categorical data from the raw input table Xraw

into one-hot representations, and pass this to the network. As race-data is naturally sequential, one
could consider an RNN model. Alternatively one may consider a standard FC network as in Wong.

6



Figure 5: Example of a complex decision rule for selecting a horse.

(2018). With this approach the feature set now has shape:

Input.shape = (·, 14, 7386) .

Moreover a deep network will necessarily be required to learn horse-identity driven dependencies.
Given the input shape, a fully-connected network may not be the most appropriate architecture,
and it remains to be investigated what would be the most appropriate architecture. As a proof of
concept, one may first discard horse identities as in Wong. (2018), thus resulting in an input of shape
Input.shape = (·, 14, 587), however it remains to be discovered what is an appropriate architecture
for a full end-to-end model including the most important feature of horse-identities.

References
Ruth N. Bolton and Randall G. Chapman. Searching for positive returns at the track: A multinomial

logit model. Management Science. 1986

Janett Williams and Yan Li. A Case Study Using Neural Networks Algorithms: Horse Racing
Predictions In Jamaica. Proceedings of the 2008 International Conference on Artificial Intelligence,
ICAI 2008, July 14-17. 2008.

Elnaz Davoodi and Ali Reza Khanteymoori. Horse Racing Prediction Using Artificial Neural Net-
works. Proceedings of the 11th WSEAS international conference on nural networks. Pages 155–160.
June (2010)

S. Pudaruth and N. Medard and Zaynah Bibi Dookhun. Horse Racing Prediction at the Champ De
Mars using a Weighted Probabilistic Approach. International Journal of Computer Applications.
2013

Hsiu-chin Chen and Surjono H. Sutjahjo. Expert prediction, symbolic learning, and neural networks.
An experiment on greyhound racing Article in IEEE Expert.1995

Luk Wong. Horse Racing Prediction using Deep Probabilistic Programming with Python and PyTorch
(Uber Pyro). Final year project report. Chinese University of Hong Kong. 2018

http://hkracingdb.com/ 2021

Racing 201: How to pick your winning horse. Hong Kong Jockey Club. 2021

7


	Introduction
	Related work
	Dataset and features
	Raw data
	Discussion of the feature-engineering route
	Feature-engineering detail
	Train/Dev/Test split

	Methods
	Architecture
	Labelling and loss function
	Benchmarks and evaluation metrics
	Limitations of feature-engineering and discussion of end-to-end approach

	Experiments and results
	Conclusion and future work
	Appendices
	Input data
	Discussion of end-to-end approach

