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Abstract

Automatic question generation (AQG) for the purpose of generating assessments
in educational settings is a popular subdomain within the field of Natural Language
Processing [1]. However, only a handful of research projects have focused on
AQG for the purpose of enhancing, rather than evaluating, students’ learning [2],
[3]. Research in the fields of psychology and education has shown that posing
questions to students immediately after engagement with educational material
improves retention [4], [5] . Research has also indicated that student engagement
is critical to learning [6, pp. 40–45]. Thus, we created a novel model that, given a
passage and a question, evaluates how interesting a question is (interest) and how
much the question aids in comprehension of the passage (comprehension). This
model could function as the discriminator component for a generative system that
would generate optimally engaging and useful questions. Our model was able to
achieve human-level accuracy on binary prediction of interest and comprehension.

1 Introduction

One of the main ways in which students learn new information is through reading. However, simply
reading a passage once leads to poor retention of the material. Research by psychologist Henry L.
Roediger has shown that quizzing oneself on information one recently learned significantly improves
retention [4]. Not only does quizzing oneself lead to better retention than simply reading a passage
once, it is also superior to re-reading the passage. Recall after one week is nearly two times greater
when a student quizzes herself after reading rather than re-reading [5].

Existing educational material takes advantage of this phenomenon. For example, many textbooks
include concept checks after each section to help students review the material they just read. Currently
these concept checks are human-generated. AQG could be applied to this problem to save the time
that textbook creators spend generating questions and to create concept-checks for other media (such
as online articles) where it would otherwise be impractical to spend time creating questions. Making
questions more interesting also improves learning outcomes. Research by the U.S. Department of
Education has shown that increased student engagement leads to better learning outcomes [6, pp.
40–45].

Given the novelty of the metrics and that we had limited prior experience with NLP, we decided to
focus on a classification, rather than generation, task, because it is more achievable. Thus, we created
a discriminator model that, given an input of a passage and a question, produces an output binary
prediction of whether the question will improve student comprehension of the passage, and whether
the question will improve student interest in the topic.
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2 Related work

Current AQG systems are not designed to create questions that improve student comprehension
of learning material. A 2019 survey of AQG systems for educational purposes identified only 7
papers focused on AQG for knowledge acquisition, and no AQG systems had evaluation metrics that
considered how interesting a question is [1]. Further, an analysis of the pedagogical usefulness of
question generation for reading comprehension found that there "many [evaluation] approaches focus
on linguistic quality only while ignoring the pedagogic value and appropriateness of questions" [7].

Another 2019 survey paper identified that one of the key limitations to improving neural question
generation was that Seq2Seq models struggle with long passages [2]. However, with newer models
such as XLNet and BigBird producing strong results on passages that are thousands of tokens long,
this limitation is becoming less of an issue [8], [9]. We also communicated with Yuxi Xie, who
discovered that adding a relevance discriminator to question generators significantly improves human
evaluation of the resulting questions [10]. Our model’s architecture is inspired by her model.

3 Dataset and Features

3.1 Raw Data

Key to training our discriminator is training it on rich passages and questions. Datasets such as
SQuAD would be insufficient because the passages are short and the questions are low on Bloom’s
taxonomy, which means that they would not be interesting to students [3]. Thus, we identified the
LearningQ (LQ) dataset as the best choice because it is composed of informational passage from
Khan Academy and human-generated questions [3]. LQ poses many higher-order questions that go
beyond simple retrieval of information, as is the case with SQuAD [3, pp. 486–487].

The LQ dataset contains 230k questions: 7k are instructor-generated questions scraped from TED-Ed
and 223k are student-generated questions scraped from Khan Academy. All questions are paired
with their source documents. We selected a subset of 6k questions from the LQ dataset from Khan
Academy articles in the humanities category. LQ covers various domains including mathematics,
humanities, and preparation for standardized tests, but we filtered specifically for questions and
articles in the humanities domain. Humanities articles tend to be more self-contained — unlike math
articles, they can be understood better without the context of other articles. This aspect was critical as
it allowed us to manually label the questions in our subset of LQ dataset according to our criteria of
how useful and engaging a question is.

3.2 Labelling

Our model is novel in that it evaluates a question based on how engaging it is and how much it aids a
student’s comprehension of a preceding passage of text. Although we could get all pairs of passages
and questions we needed from the LQ dataset, we still needed to label those questions based on
engagement and comprehension.

We contracted Labelbox to label approximately 6246 questions, based on the ontology shown in the
appendix [11]. Each crowdworker read a passage, then read the associated questions and rated them
using our custom label classes shown in the appendix.

3.3 Analysis

All code for this section is located in ‘analysis.ipynb’.

3.3.1 Label Distribution

88.38% of the questions were labeled understandable. The scores for comprehension were roughly
bimodally distributed, with 4 being the most common label, and 2 being the second most common.
Interest, on the other hand, was highly weighted 4. The label 4 constituted 65% of all entries.

Given the unequal distribution of labels, we decided to compress the labels into binary values so
that there would be more entries per label. Thus, values of 1 and 2 are assigned negative binary
labels and values of 4 and 5 are assigned positive binary labels. Values of 3 are discarded. We also
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recognized that it would be necessary to balance the binary dataset. We explain the steps we took in
the ’Processing’ section below.

3.3.2 Human-level Performance

We set approximately 300 passage-question pairs to be labelled by multiple labelers. Each of these
pairs was typically labelled by four people, leading to approximately 1200 total entries in our
cross-validation dataset. For clarity sake, in this section, we will consider entries with the same
passage-question pair to be part of the same ’group’.

We calculated human-level accuracy by performing a holdout procedure on each group in the cross-
validation dataset.

1. Select one hold-out entry from the group.

2. Calculate the mean label value for the remaining entries in the group and convert it to a
binary label.

3. Calculate the binary label of the hold out.

4. Compare the binary label of the hold out to the binary label calculated in step 2.

5. Repeat steps 1-5 on the remaining entries in the group.

Accuracy is calculated as the percent of times that the binary label of the hold out matched the binary
label calculated in step 2. The accuracy percentage represented the accuracy with which a human
labeler can correctly predict the binary label of an entry. Given this procedure, human-level prediction
accuracy is 48% for comprehension, and 71% for interest. Thus, the goal of our model is to achieve
these accuracy benchmarks.

3.4 Processing

Before training the model, we performed the following pre-processing steps on the dataset. The
dataset used to train the interest classifier and the dataset used to train the comprehension classifier
were pre-processed individually, because some of the processing steps were performed on a specific
class.

1. Average labels: So that we could perform validation on the dataset, some passage-question
pairs were labeled by multiple workers. For passage-question pairs that were labeled multiple
times, we compressed them into one entry, and reculated their labels as the arithmetic mean
of the group.

2. Drop non-compressible questions: We dropped any examples whose comprehension score
was not 1.

3. Drop entries with non-extreme labels: Drop all entries with labels with values between
2 and 4. We dropped intermediate because we expected that only including more extreme
values in the dataset would lead to more accurate binary classification.

4. Calculate binary labels: Values 2 or less are given a binary label of 0. Values 4 or greater
are given a binary label of 1.

5. Balance dataset: Sample the dataset (without replacement) such that there are an equal
number of positive and negative examples. Thus, the total size of the final dataset is twice
the size of the binary value with the fewest examples.

4 Methods

Training entails fine-tuning a pre-trained XLNet from Huggingface [12]. We chose XLNet rather
than BERT because XLNet can handle inputs greater than BERT’s limit of 512 tokens, and most of
our passages have between 500 and 1500 tokens [8], [13], [14].

We pre-processed our passage-question pairs using a tokenizer. The tokenizer produces three arrays:
Input IDs, Attention Mask, and Token Type IDs. These tokens are fed into the model. Within the
model, the token arrays are passed to the encoder. The encoder calculates embeddings for each
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token and then calculates attention to model the semantic relationships within the text. The encoder
produces a logit output, which is then fed through a sigmoid function to produce a logistic prediction
as the model output. Figure 1 illustrates our model’s architecture. Since the model output is a binary
label, we chose binary cross-entropy for the loss function.

Figure 1: The model architecture

We considered creating a composite model that included this encoder and a pre-existing model
(StackX) used to identify features of questions posted on StackExchange [15]. However initial
analysis showed that this composite model significantly underperformed the non-composite model,
and could not achieve accuracy higher than random chance. Thus, we decided to simply use the
model described above. You may see references to ‘stackx’ in the code, but the model ignores said
data.

5 Experiments/Results/Discussion

5.1 Hyperparameter Tuning

We trained the model using mini batches of size 3 because that was the maximum size that could fit in
VRAM of the Tesla P100s on which we trained. Because of the small minibatch size, loss instability
was a major issue. Thus, we used Adam because of its high efficacy on noisy, stochastic training
problems [16]. We also searched for the optimal training rate and found that rates greater than 1e-5
lead to instability, while rates smaller than 1e-5 lead to slower training without increasing stability.
Finally, we implemented an exponential decay schedule for a learning rate with a decay rate of 0.9
and decay after 100 steps. Without this decay, the loss would typically become unstable after the
second epoch.

5.2 Comprehension

We were able to surpass human-level accuracy for binary classification of question comprehension.
By training for 6 epochs on a set of 1,418, we achieved a training set accuracy of 68.3% and a loss of
.6128. Test set accuracy was 64% with an F1 score of .64. Test set accuracy tends to level off at 65%.
Training loss appears to converge after 6 epochs without improving training set performance, which
indicates that our model was unable to overfit the training data (see Figure 2).

5.3 Interest

We were able to achieve human-level accuracy for binary classification of question interest. By
training for 10 epochs on a set of 696 examples, we achieved training set accuracy of 92.4% and a
loss of .2278. Test set accuracy was 71% with an F1 score of .71. Test set accuracy tends to level off
at 70%. Training on fewer than 10 epochs leads to lower test set accuracy, but additional epochs after
10 do not provide gains in performance. Because this matches human-level accuracy, we concluded
that it would be unlikely that further tuning would lead to meaningful accuracy improvements.
Furthermore, loss appears to level out around epoch 9 so this further suggests that the model reaches
its limit around epoch 10 (see Figure 4).
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Figure 2: Comprehension training set loss.
Figure 3: Comprehension test set confusion
matrix

Figure 4: Training set accuracy
Figure 5: Training set loss

The model is highly susceptible to training set imbalance. Positive examples were over-represented
in our original dataset, and caused our model to predict positive every time. However, balancing the
dataset leads to balanced predictions (see Figure 3 and Figure 5).

6 Conclusion/Future Work

In this project, we fine-tuned two pre-trained XLNet models from HuggingFace: given a passage, one
model classifies a question as potentially interesting to students, and the other to classifies a question
as potentially helpful to students in comprehending the corresponding passage. We considered a
composite approach of concatenating an XLNet model’s output with the output from a pre-existing
StackX model and applying a final sigmoid layer, but this approach underperformed relative to the
non-composite approach.

Our final models were able to achieve at least human-level accuracy, although human-level accuracy
for the comprehension task is no better than random guessing. Given that we asked labelers for
subjective ratings of comprehension, the lack of consensus in comprehension labels suggests that they
were more correlated to the labeler’s personal preference rather than a discernible trend in question
style. Our model’s over 90% training accuracy in determining interest labels indicates that there
is some underlying objective notion of what an interesting question is that influenced the labelers’
subjective ratings. If we had more time, we would try to craft more objective comprehension labels
for questions. For example, we could create comprehension-focused quizzes for each passage and
observe how well each labeler performs on a quiz depending on whether they saw the corresponding
questions or not. With more objective ratings for comprehension and with more computational
resources to train with a larger batch size, we would hope to see less noisy results.
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7 Contributions

We would like to thank Jonathan Li, our TA, in his help with this project. Thank you to Yuxi Xie
for her explaining questions that we had about her AQG model. Furthermore, without Labelbox’s
support in labelling our dataset, this project would not have been possible.

Kevin gathered the passage-question pairs from the LearningQ dataset, worked with Labelbox to
develop the ontology for human labelers, and exported the labels to generate our initial dataset. He
also wrote the code to generate metrics for our model’s performance.

Michael researched model architectures and wrote the python code for creating our model. He
also performed data analysis on our dataset to understand the factors that affected our model’s
performance.
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8 Appendix

The three custom classes of labels that human labelers assigned to each passage-question pair.
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The ontology we created on the Labelbox platform for crowdworkers to label questions.
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