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Abstract

The ability to identify bird species on a large scale can provide vital information
about our ecosystems and biodiversity [1]. The quantity and composition of bird
species can reflect regional ecological environment and indicate the health of
changing ecosystems [2]. However, recognition of a large number of species
based on song audio has proven to be challenging. In recent years, deep learning
techniques such as convolutional neural networks (CNN) have been successfully
applied in many arenas of science [3] and provided efficient methodologies, such as
pattern recognition, object detection in images [3, 4], and classification of patterns
in audios [5] and speech recognition. In this CS230 project, we utilized the bird
song audio spectrogram data-set provided by the Biology department of Stanford
and created a machine learning model that can identify four types of bird species
with as high as 0.886 F1 dev score.

1 Introduction

Bird population, species diversity, migration, and geographical distribution are important factors for
maintaining and protecting biodiversity, as well as monitoring of the health of our ecosystem [1, 2].
To correctly identify and classify bird species on a large scale is a crucial step for keeping track of
bird species diversity. However, conventional methods for identification of individual bird species
and classification of mass bird species have been proven to be time-consuming, and classification
results often have limited accuracy. Recent computational advancements in machine learning and
deep learning have been extremely efficient and accurate in classification of objects, animals, and
plants from within large data sets.

For this CS230 project, our team collaborated with Kelley Elizabeth Langhans (researcher) and
Andreas Paepcke (CS project lead) from Biology department of Stanford University to tackle the
bird species identification problem using large bird song audio recordings files. The input data set is
consisted of approximately 10,000 bird song grayscale spectrogram and from a total of 14 different
bird species. As an initial step, our goal is to be able to identify 4 different species of birds from the
dev data with reasonably high accuracy.

2 Prior Work

Machine learning approaches such as nearest neighbor matching [6] and decision trees [7] have been
widely used in previous studies of bird species identification. The most extensive deep learning work
is the BirdNet, a Cornell lab research work that used the artificial neural network to rank the most
likely bird species from bird song recordings. BirdNet is capable of classifying 984 bird species and
it has overall test accuracy of 91.5% [8].
In other studies, transfer learning from ResNet-50 CNN was employed to a smaller target data set
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and achieved 79% average validation accuracy [9]. Due to the image file format of original data and
additional resource needed for code development, other CNN networks were not validated against
the test data of this project, see Next Steps.

3 Dataset and Features

The total amount of training data provided is 10,483 spectrogram files and the dev data consists of
1165 files. The top four species with the most training data available are:
Arremon aurantiirostris (ARRAUR-S): 1136 spectrogram files
Dysithamnus mentalis (DYSMEN-S): 1364 spectrogram files
Henicorhina leucosticta (HENLES-S): 2212 spectrogram files
Lophotriccus pileatus (LOPPIT): 1567 spectrogram files
Other bird species (OTHER): 4204 spectrogram files
Initial data is prepared and pre-processed by Andreas. Further processing and augmentation of
the training data is planned for next step and will be updated in the final report. Furthermore, the
collaborating team at Stanford is continually working on collecting more data and field recordings
which we plan to use to augment our model’s performance. Figure 1 shows an example of spectrogram
that belongs to HENLES-S and Figure 2 shows a spectrogram from DYSMEN-S.

Figure 1: Sample image spectrogram from
bird species: HENLES-S

Figure 2: Sample image spectrogram from
bird species: DYSMEN-S

4 Method and Model Architecture

Overall, our model loads in spectrogram data and outputs a length-5 vector predicting which of
the 5 classes the spectrogram belongs to. As a multi-class classification task, we start by using
cross-entropy loss as a training metric for our model, with an Adam optimizer. We chose F1 score
as our evaluation metric on our model’s performance because it better evaluates performance over
imbalanced classes of data.

The input images are uniformly transformed to 512x128 pixels in size and normalized for training
of the model. Since the goal is image classification, we use a CNN as our model architecture. Our
baseline neural network consists of three alternating convolutional layers and max pooling layers,
followed by three fully connected layers with dropout. Apart from those layers, batch normalization
is applied after each convolutional layer. We found that the baseline achieved a maximum train set F1
score of 0.7 and dev set F1 score of 0.67, which is indicative of a high bias situation.

Figure 3: CNN v2
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4.1 Expanded Convolutional Network

Since the baseline had a high bias problem, we increased model complexity by adding convolutional
layers. Expanding to 4 and 5 convolutional layers resulted in a high variance problem, with very high
training performance but mediocre dev performance. Thus, our later models work with 4 convolution
layers since it is the lowest number that is complex enough to learn this problem.

The result of the expanded CNN model shown in Table 1 is presented in the Experiment section,
Table 2. The training F1 score reached 0.99, indicating there is an overfit and dev F1 score reached
0.883, which is significantly higher than previous model.

# Input Output Layer Stride Pad Kernel in out Parameters
1 512 128 1 255 64 32 Convolution 2 1 (3,5) 1 32 512
2 255 64 32 255 64 32 BatchNorm 32 32 64
3 255 64 32 127 32 64 Convolution 2 1 (3,5) 32 64 30784
4 127 32 64 127 32 64 BatchNorm 64 64 128
5 127 32 64 63 16 128 Convolution 2 1 (3,5) 64 128 123008
6 63 16 128 63 16 128 BatchNorm 128 128 256
7 63 16 128 31 8 256 Convolution 2 1 (3,5) 128 256 491776
8 31 8 256 31 8 256 BatchNorm 256 256 512
9 31 8 256 64 1 1 Fully Connected 63488 64 4063296
10 64 1 1 64 1 1 Dropout 64 64 0
11 64 1 1 5 1 1 Fully Connected 64 5 325

Total 4710661

Table 1: CNN v2 Structure.

4.2 Data Augmentation

Data augmentation methods are frequently used to expand the dataset, which may prevent overfitting
and achieve better dev results. Due to the nature of the sound spectrograms, the training images
cannot be flipped, sheared or scaled without distorting the data beyond auditive recognition. Thus,
during the training of the model, vertical and horizontal shifts were experimented as augmentation
methods. Each training spectrogram image was shifted vertically, horizontally, or both by a small
amount such that important features stayed within the bounds of the image. However, with each
augmentation method, the F1 score/dev accuracy resulted in poorer test-time results than before.

4.3 Weighted Cross Entropy Loss

Since the training data is unbalanced for the classes of bird species, we assign class weights to balance
performance across the species. The loss calculated with weighted average is the following:

loss =
ΣN

i=1weight(class[i])loss(i, class[i])

ΣN
i=1weight(class[i])

.

Since the OTHER class has the most data points, we reduce the weight of our OTHER class from 1.0
to 0.4, which generally deincentivizes predicting the OTHER class; especially with simpler models,
not weighting the data often led the model to predict the other class. Using our later models, we
compared weighted and unweighted cross entropy loss and found that the performances are similar.
The loss curves highly resemble each other, other than a period of slow improvement at the beginning
of training with unweighted loss. As a result, we keep the weighted loss function to since it seems to
speed up training with little impact on the final performance.

4.4 Max Pooling

It is common to have a max pool after the convolutional layer, however, in our case, adding max
pooling hurt the dev performance. This may be due to the class imbalance and also the relatively
small data sets, that caused the model to overfit on the training and perform poorly on the dev set.
In our final architecture, the model no longer has any max pooling layers, since it performed better
without max pooling layers.
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4.5 Advantage of Noise

When setting the batch size to be much smaller or even 1, we can observe more noise in the loss and
training performance. Given the goal here is to find a set of parameters for the model that performs
best on the dev set, we took advantage of this noise and captured a set of parameters that performed
best and saved it to disk. It really didn’t matter if we ran 10,000 epoch training, if we found the best
performance against the dev set at 200th epoch, that was the parameter combination for the model
that mattered.
In a more classic sense, if we have training, dev and test sets, we would want to capture the best
performing parameters for the test sets as the performance of the test set is more important than the
dev set. Ultimately, it is most important how these parameters fair in real world applications.

5 Code

The project mainly consisted of data preparation script "data.py", training script "train.py", neural
network structure module "cnn.py" and evaluation script "evaluation.py". To improve the team
velocity, we made it easier for us to try various hyperparameters by adding support for hyperparameter
arguments when running the training. For example, if we wanted to change hyperparameters for a
training session, we could do the following from command line.

» python train.py batch_size=16 learning_rate=0.01num_epoch=3 dropout=0.2

In the final part of the project, we have expanded our command line arguments to 11.

» python train.py model_version=2 test_f1_score_threshold=0.80 augment_data=False
cnn_activation=relu layers=4 conv_kernel_size=3,5 batch_size=4 learning_rate=0.0001
l2=0.01 num_epoch=200 dropout=0.3

We chose PyTorch as the machine learning framework for the project and the live system was built on
AWS.

6 Experiments

The table below shows the experiments against various models and hyperparameters combinations,
and the respective training and dev performance.

Experiment Kernel size Batch size Learning rate L2 Dropout Train F1 Dev F1
1 (3,5) 32 0.0001 0.01 0.3 0.986 0.815
2 (3,5) 16 0.0001 0.01 0.3 0.995 0.837
3 (3,5) 8 0.0001 0.01 0.3 0.994 0.862
4 (3,5) 4 0.0001 0.01 0.3 0.971 0.886
5 (3,5) 2 0.0001 0.01 0.3 0.982 0.876
6 (3,5) 4 0.0001 0.01 0.4 0.983 0.877
7 (3,5) 4 0.0001 0.01 0.2 0.987 0.878
8 (3,3) 4 0.0001 0.01 0.3 0.991 0.873
9 (3,5) 4 0.0001 0.01 0.4 0.990 0.838
10 (3,5) 4 0.001 0.01 0.3 0.754 0.666

Table 2: Experiments.

7 Results

Across our experiments, we found that experiment 4 performed the best on the development set.
Using 4 convolutional layers with 3 by 5 kernels, ReLU activations, learning rate of 0.0001, no data
augmentation, L2 regularization constant of 0.01, and dropout of 0.3, this experiment reached a dev
set F1 score of 0.886. The confusion matrix for the train and dev set from the best performed model
are given in table 3 and 4.
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Figure 4: Experiment 10, batch size: 4,
dropout: 0.3, kernel size: 3x5, learning rate:
0.001

Figure 5: Experiment 4, batch size: 4,
dropout: 0.3, kernel size: 3x5, learning rate:
0.0001

Predicted
ARRAUR_S DYSMEN_S HENLES_S LOPPIT OTHER Total

A
ct

ua
l ARRAUR_S 1113 0 2 7 14 1136

DYSMEN_S 1 1344 2 1 16 1364
HENLES_S 0 1 2185 1 25 2212
LOPPIT 0 1 1 1557 8 1567
OTHER 65 95 45 21 3978 4204

Total 1179 1441 2235 1587 4041
Table 3: Experiment 4 predicted species vs. actual labels (train set)

Predicted
ARRAUR_S DYSMEN_S HENLES_S LOPPIT OTHER Total

A
ct

ua
l ARRAUR_S 105 3 1 2 15 126

DYSMEN_S 1 133 2 0 16 152
HENLES_S 0 2 232 2 10 246
LOPPIT 0 2 4 160 9 175
OTHER 11 24 18 8 405 466

Total 117 164 257 172 455
Table 4: Experiment 4 predicted species vs. actual labels (dev set)

8 Challenges and Next Steps

One difficulty arises because the OTHER class consists of songs from several bird species which
may be much more dissimilar from each other than from the other four classes. Throughout our
development process, we consistently observed that our model performed relatively poorly on the
OTHER class, based on the training and dev set confusion matrices, such as those in Tables 3 and 4.
Going forward, we may dissolve the OTHER class into its constituent species.

Using audio spectrograms of bird songs for classification of bird species is a novel project topic and
thus has not been studied widely. Hence, pretrained spectrogram models are not easily available.
Although audio pattern recognition research work by Qiuqiang et al. [5] presents a pretrained neural
network (PANNs) model, the audio recordings are general sounds from human speech and animal
sounds and may not be directly applicable to bird songs. BirdNet, on the other hand, has compatibility
issue with the existing training data since it uses bird song audio data. Further work is needed to
either get access to the original audio data, or time to expand the existing code to implement greyscale
spectrograms to test against BirdNet git reposition.

Other potential areas of development for the next step include: 1) exploring other loss functions and
optimizers in an attempt to improve the performance are possible options. 2) reducing background
noise in the training data. 3) obtaining more data, either through real-world fieldwork or through
further experimentation with different methods of data augmentation. We would also like to develop
an application that applies our model to predict bird species of audio recordings to test how our model
generalizes to real-world examples.
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Contributions

Utuq wrote the manuscript for project proposal, milestone as well as final report and polished the final
versions together with teammates. He did literature research on BirdNet and other CNN applications
on audio classification to help the writing and explore other CNN models to compare to our own.
Participated the design and improvement of the CNN model through multiple discussions and initial
testing with other teammates.

Patrick brings prior experience working with CNNs and deep learning projects in general. He
provided key insight on error analysis and result interpretation, as well as choosing areas of
exploration. He also contributed code for early CNN model architectures, model performance
evaluation and graphical representation, data augmentation, and other aspects of the codebase. In
addition, Patrick worked on reviewing the content and organization of the writing.

John took on the role of project lead. John worked on putting the team together, and reached out
to various members in the Stanford community for project ideas including setting up the meetings.
He contributed to setting up the standards and schedule for the team, and brought along his software
engineering and product management experience for how to approach the problem and how to build
the software. He designed and wrote the software with his team members, and ran experiments
to collect logs and plots for the paper. He worked on the homegrown CNN model architecture,
experimenting with hyperparameters and more complex models. He also helped divvy up tasks
between team members and promoted iterative review of the work and writing.
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Project Code

Contact johnngoi@stanford.edu to get access to the code https://github.com/johnnst/
cs230-project.

6

https://github.com/johnnst/cs230-project
https://github.com/johnnst/cs230-project

	Introduction
	Prior Work
	Dataset and Features
	 Method and Model Architecture 
	Expanded Convolutional Network
	Data Augmentation
	Weighted Cross Entropy Loss
	Max Pooling
	Advantage of Noise

	Code
	Experiments
	Results
	 Challenges and Next Steps 

