Teacher-Student Distillation for Heart Sound
Classification

Pranav Sriram
prsriram@stanford.edu

Abstract

Automated classification of heart sound data has been an active area of research in
recent years [1]. While recent research has involved the utilization of contrastive
learning methods in order to aid with heart sound classification, there remains room
for improvement. Furthermore, while distillation with a contrastive teacher model
has been shown to improve performance on ImageNet classification, it has not
yet been applied to heart sound classification tasks [2]. This paper explores the
effectiveness of a distilled teacher-student CNN on binary heart sound classification.
We find that our teacher-student network is able to roughly match performance
of the teacher network while being half its size. Furthermore, our teacher-student
network was able to achieve a test AUROC of .915.

1 Introduction

While heart sound classification has been an area of interest for many years [3], progress has improved
recently as digital stethoscopes have gained popularity, contributing to an expanding set of cardiac
sound data [4]. With that said, a significant portion of this sound data is unlabeled.

This problem is not unique to heart sound data. Due to the lack of reliable labeled data in the medical
Al sector, contrastive learning methods have recently gained widespread prominence in a variety of
medical classification tasks [5]. Contrastive learning is a self-supervised deep learning method that is
generally effective in paradigms with low amounts of labeled data [6].

Through Stanford’s Al for Healthcare Bootcamp, our research lab has developed a contrastive
approach to heart sound classification. However, model performance with this contrastive approach
still has room for improvement.

This project seeks to improve model performance by applying one-phase knowledge distillation.
Knowledge distillation is a training technique where we train a teacher-student model using the output
values (soft labels) from a teacher network. This was inspired by recent research that has shown
distillation with a contrastive teacher model improved performance on ImageNet classification [2].

We constructed a teacher-student CNN model and utilized the same training regime as [2] (further
explained in Appendix 8.1). Afterward, we evaluated the performance of the teacher-student model
against that of the original contrastive teacher model. The input to our teacher-student model was a
spectrogram corresponding to a heart phonocardiogram (PCG) recording. The output of this model
was a binary prediction on whether the PCG recording was normal or abnormal.

This project is important and interesting because it may help facilitate advances in the medical
audio classification space. Increasing the accuracy of automated cardiac sound algorithms could
help doctors make better medical diagnoses. Additionally, if distillation ends up being promising
in the context of cardiac sound data, it may also be beneficial in other contexts (such as lung sound
classification).



2 Related work

2.1 Heart Sound Classification

Currently, some common approaches to heart sound classification include support vector machines
(SVMs) [7] as well as some classifiers that are heavily dependent on independent feature extraction
systems [8]. With that said, there also exists research on the use of CNNs for heart sound classification
[1]. In [1], researchers were able to achieve an accuracy of 79.5% on binary heart sound classification
via use of a CNN and the Windowed-sinc Hamming filter algorithm. The promising results reported
in [1] were part of what motivated our decision to use a CNN model architecture for this project.

2.2 Contrastive Learning

Contrastive learning is a machine learning framework where learning occurs by encouraging rep-
resentations from similar examples to be close to each other. This framework was introduced in
[6]. It is especially effective for tasks lacking labeled data. In a contrastive setup, an input and an
augmented version of that same input are considered to be a positive pair. Any other combination of
inputs is considered to be a negative pair. Learning proceeds by attempting to optimize similarity in
representations between positive pairs. In doing so, contrastive models develop an understanding of a
given domain.

Contrastive learning has shown strong results in some medical domains. For example, researchers at
Stanford found that pre-training with the contrastive framework Moco-CXR improves performance
on chest X-ray interpretation [9]. Based on ongoing research via the Al for Healthcare Bootcamp, my
lab has also found promising results when applying contrastive learning to the heart sound domain.

2.3 Distillation

Distillation involves the use of a teacher-student model that is trained on soft labels from a teacher
model. As we’ve discussed, [2] shows that one-phase distillation can have promising results on
ImageNet classification. In addition, many other papers have found training with distillation can
improve classification performance [10].

There has also been some existing research on distillation in audio domains. For example, the paper
"Multi-Representation Knowledge Distillation For Audio Classification" shows that distillation can
improve performance across a variety of different audio classification tasks [11]. Despite these
promising results, there has not been much research into the effectiveness of distillation in medical
audio classification. This paper will attempt to fill this hole in existing research.

3 Dataset and Features

For our dataset, we utilized the PhysioNet/CinC Challenge 2016 dataset [4]. The PhysioNet/CinC
Challenge 2016 dataset consists of 3,240 phonocardiogram (PCG) recordings varying from 5 to
120 seconds in length and classified as “normal” and “abnormal.” 2,575 of these recordings had the
label "normal" and 665 had the label "abnormal." Normal recordings came from healthy patients and
abnormal recordings came from patients with confirmed cardiac conditions (such as coronary artery
disease) [4]. We split up the Physionet dataset into pre-train, fine-tune, validation (dev), and test sets
according to patient ID with each patient only appearing in one set.

The pre-train dataset consisted of 2,040 examples. The fine-tune, validation, and test sets each
consisted of 400 examples each. The dev and test sets were class-balanced with 200 normal and
abnormal examples each. Thus, the pre-train and fine-tune datasets collectively contained 2,175
normal and 225 abnormal recordings. This class imbalance made classification more challenging.

Recordings were padded and converted into Mel Spectrograms. Spectrogram size was set to 50
pixels by 2805 pixels. An example heart spectrogram is provided in Appendix 8.2. While no data
augmentation was used for the teacher-student model, Google’s SpecAugment was used to train the
contrastive teacher model [12].



4 Methods

Three models were trained for this project: a distilled teacher-student model, a contrastive teacher
model, and a student baseline model.
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Figure 1: Teacher-Student / Student Baseline CNN architecture: The spectrogram input was 50 by
2805 and a batch size of 16 was used. LeakyReLLU was used as an activation function following the
CONYV layers. The model consisted of 5,838,465 trainable parameters.

The teacher-student architecture (shown in Figure 1) was inspired by classic convolutional networks,
especially AlexNet and VGG-16. LeakyReLLU was used as an activation function following CONV
layers and batch size was 16. The output value corresponds to the binary prediction logit value. A
negative output value means the model predicts the spectrogram corresponds to a normal heart sound
and a positive value means the model predicts the spectrogram corresponds to an abnormal heart
sound.

The teacher-student model was trained under a supervised approach with the psuedo-labels coming
from the output of the contrastive teacher model. A Binary Cross Entropy with Logits loss function
was chosen for the teacher-student network.

The teacher model was pre-trained under a contrastive approach. Its architecture consisted of a ResNet-
18 encoder followed by a multilayer perceptron evaluator. The number of trainable parameters in the
teacher model was 11,827,905, over double that of the teacher-student / student baseline models.

The teacher model used a Normalized Temperature-scaled Cross Entropy (NT-Xent) loss function for
pre-training as specified in [6]. This loss function can be expressed for a positive pair of examples as:

exp(sim(z;, z;)/T)
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Figure 2: NT-Xent Loss Function

Positive pairs for our teacher model were defined as an input spectrogram and its corresponding
augmented spectrogram (generated via SpecAugment). z; and z; correspond to the vectors generated
by passing our contrastive encodings for ¢ and j through a projection head. Finally, the similarity
function (sim(z;, z;)) corresponds to cosine similarity. The teacher model used a temperature of .07.
Finally, this loss was summed across all positive pairs in our dataset.



Lastly, the student baseline model used the same architecture specified in Figure 1. However, unlike
the teacher-student model, it was trained with the true label values for each spectrogram. It also used
a Binary Cross Entropy with Logits loss function.

S Experiments/Results/Discussion

5.1 Hyperparameters

For our experiments, the main hyperparameter tuned was the learning rate. We experimented with
three different learning rates: o = 10~3,107%, 1075, When the teacher-student model was run with
a learning rate of v = 1073, predictions were inconsistent and the model appeared somewhat instable.
When run with a learning rate of v = 107>, this problem was resolved but training was quite slow. A
learning rate of @ = 10~* was a good balance, with the model’s performance remaining relatively
stable and training taking a reasonable amount of time.

The teacher model used a batch size of 16. Thus, to ensure consistency, we ran the teacher-student
model with a batch size of 16 as well.

5.2 [Experimental Procedure

As mentioned, we trained three separate models. Our experimental procedure was inspired by the
methodology used in [2] (high-level diagram provided in Appendix 8.1).

The contrastive teacher model was pre-trained for 3 epochs on our pre-train dataset using a NT-Xent
loss function. Importantly, it was not provided with any of the true labels for the pre-train dataset.
Afterwards, it was supervised fine-tuned on our fine-tune dataset for 30 epochs. For fine-tuning, the
teacher used a Binary Cross Entropy with Logits loss function. Checkpoints were saved at the end
of each epoch, and the checkpoint with the highest dev set AUROC was stored. This helped avoid
overfitting to the fine-tune set; the checkpoint with the highest dev set AUROC ended up being that
after the second epoch of fine-tuning.

The teacher-student model was trained for 15 epochs on the pre-train dataset. It was given the output
of the aforementioned teacher model as soft labels. Notably, it was not provided with any of the true
labels for the pre-train dataset. In line with the methodology followed in [2], the teacher-student
model was not trained at all on the fine-tune set. Checkpoints were saved the same way as the teacher
model. The best checkpoint ended up being that after the last epoch.

Finally, the student baseline model was also trained for 15 epochs on the pre-train dataset. It was
given the true labels for the pre-train dataset. Checkpoints were saved the same way as above; the
best checkpoint was after epoch 11.

5.3 Results & Discussion

The primary evaluation metric on our dev set was AUROC. This metric is justified since our dev set
was class-balanced. These results are detailed in the table below:

Model Dev Set AUROC

Teacher 926
Teacher - Student .907
Student Baseline .820

Table 1: Dev AUROC Performances. Teacher-Student Dev AUROC plot included in Appendix 8.3.

As shown in the above table, the teacher model had the highest dev set AUROC. Surprisingly, despite
having access to the true labels on the pretrain dataset, the student baseline model performed the
worst on the dev set. This is likely due to class imbalance. Since about 90% of our pre-train dataset
consisted of normal examples, our student model is incentivized to decrease pre-train loss by guessing
"normal” overly often. However, this behavior did not translate as well on the class-balanced dev set.

Using a weighted Binary Cross Entropy Loss function for just the student baseline was considered;
however, it was ultimately determined that this would serve as an unfair baseline (since by definition,
the teacher-student model cannot possibly have access to the same weighted loss function).



On our test set, we calculated AUROC, generated a confusion matrix, and determined precision,
recall, and F scores for both of our classes:

Predicted Label
Teacher Teacher - Student Student Baseline
Normal Abnormal Normal Abnormal Normal Abnormal
Actual Label Normal 154 46 150 50 198 2
Abnormal 21 179 8 192 146 54

Table 2: Confusion matrices for teacher, teacher-student, and student baseline models.

Teacher Teacher - Student Student Baseline

(AUROC: .927) (AUROC: 915) (AUROC: .864)
Precision Recall F1  Precision Recall F1 Precision Recall F1
Normal .88 77 .82 .95 75 .84 58 .99 .73
Abnormal .80 .90 .84 .79 .96 .87 .96 27 42

Table 3: AUROC, precision, recall, and F1 scores for the aforementioned models.

These results closely align with our dev set results. Teacher and Teacher-Student performance is
very good, both resulting in test AUROC’s above .9, which is typically considered outstanding on
medical diagnostic tasks [13]. While the teacher model has a better AUROC, if we consider test
accuracy, our teacher-student model (accuracy of 85.5%) actually outperforms our teacher model
(accuracy of 83.25%) slightly. This is especially impressive given the fact the teacher-student model
only contains 5,838,465 trainable parameters while the teacher model contains over double that
(11,827,905 trainable parameters). Both models have F1 scores for the normal and abnormal classes
between .8 and .9.

Additionally, the test results for the student baseline model lends credence to our class imbalance
theory. We can see that the student baseline has an extremely high recall on the normal class at .99
(correctly labeling 198 out of 200 normal examples as normal). However, the recall on the abnormal
class is extremely low at .27. Looking at the confusion matrix for our student baseline, we see that it
has an extremely high amount of false negatives (146). However, it’s important to note that despite
the class imbalance issues plaguing the student baseline model, it still achieves a test AUROC of
.864.

In terms of qualitative evaluation, we examined some of the raw audio files and spectrogram inputs
our teacher-student model predicted incorrectly. As untrained human listeners, we were unable to
hear any obvious patterns in the audio or identify patterns in the spectrogram. In the future, we plan
to show a trained medical professional our incorrectly predicted heart sounds files and spectrograms
to see if they can help with pattern identification.

6 Conclusion/Future Work

We were able to train a teacher-student model that roughly matched the performance of our teacher
model in terms of test accuracy and AUROC. This is significant given our teacher-student model was
less than half the size of the teacher model.

For future work, we’d like to explore using a focal loss function across all three of our models. This
may help solve the student baseline model’s class imbalance issue, in turn providing a more useful
baseline for student performance on this task. Looking at the dev AUROC plot in Appendix 8.3, we
see that it’s possible teacher-student performance would slightly benefit from longer training. Thus,
we’d also like to experiment with using early stopping (train each model until dev AUROC decreases
on three consecutive epochs) instead of a fixed epoch regime. Additionally, we’d like to explore
changing the architecture of the teacher-student model and test whether two-phase distillation yields
better results than our current one-phase approach.



7 Contributions

All contributions on the distillation algorithm were made my myself. The entirety of my research lab
(Lung Heart Classification Team in the Al for Healthcare Bootcamp) contributed to the contrastive
teacher model utilized. Thanks to Pranav Rajpurkar for advising this work.
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8 Appendix

8.1 High-Level Overview of Training Regime
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Figure 3: High-level overview of our overall training regime. First, we pre-train our contrastive
teacher model on a large unlabeled dataset. Then, we fine-tune it on a small fine-tune dataset with
labels (normal supervised learning). Next, we pre-train a teacher-student CNN on the same unlabeled
dataset using the logit values outputted by the teacher model. Notably, the teacher-student network is
not fine-tuned. Both the teacher and teacher-student networks are then evaluated. This image was
edited from [2].

8.2 Heart Spectrogram Example
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Figure 4: On the left, is an example heart spectrogram from our dataset. On the right, is the result
after passing the mel spectrogram through SpecAugment. Both the original and augmented
spectrograms were used for training our contrastive teacher model. In contrast, the teacher-student
model only used the original mel spectrogram.



8.3 Teacher-Student Dev AUROC Plot
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Figure 5: This graph shows the teacher-student model’s Dev AUROC performance over time. While
Dev AUROC, appears to increase roughly linearly across the first 8 epochs (except for the drop
around epoch 4), the rate of increase does slow down following epoch 8. With that said, it’s still

possible the teacher-student model may benefit from extended training.
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