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Abstract

Droughts are a high-priority climate threat that can result in vast economic damage
while threatening food and water systems. With the drought vulnerable hydrologic
patterns of the Western United States, it is especially critical to understand their
behavior in this region. Droughts are multifaceted and difficult to predict, in
part due to a large number of contributing factors [1]. While prior work using
machine learning models to predict droughts has been done in other countries, we
propose using a novel many-to-one Long Short-Term Memory (LSTM) model
approach across the Western U.S. Our model predicts the severity of droughts
given sequential measurements of precipitation, temperature, and soil moisture,
outputting the drought index forecast for the following season. The linear model
gave a test set error of 0.137 while the LSTM model gave a test set error of 0.0699.
Further tuning of hyperparameters and an increase in training set size could help to
reduce this error.

1 Introduction

Droughts are amongst one of the most complex geological hazards, given the many intricate con-
tributing factors, such as precipitation and soil moisture, and the various characteristics of droughts,
from intensity to spatial extent. Drought forecasting with long lead time is critical for detecting early
warning systems and risk management strategies, especially in the Western U.S. where it is extremely
susceptible to droughts. There are several types of models used in forecasting, most notable being
data-driven, physical and hybrid. There are many advantages and disadvantages to each approach, but
the popularity of artificial neural networks in the past decade has given rise to effective data-driven
models [1]. In particular, LSTM models, with its ability to retain information for longer periods, can
be considered very effective in drought prediction.

The purpose of this work is to develop and validate the utility of a many-to-one LSTM architecture
for seasonal drought forecasting in the Western U.S. While droughts are dependent on numerous
factors, our goal is to explore the possibility of drought forecasting with few variable inputs. Our
approach is to utilize the sequential measurements of precipitation, temperature and soil moisture
during the rainy season to predict the drought index in the following dry season.
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2 Related Work

Prior work using machine learning models to predict droughts has been done with models such
as decision trees, random forest, conventional artificial neural networks, coupled-wavelet artificial
neural networks, support vector regression, among others [2, 3, 4, 5]. In one study, a stacked LSTM
model was used, coupled with lagged climate variables, to perform long lead time drought forecasting
[6]. These studies have all taken place outside of the U.S. Much of the existing literature focuses
on comparing the effectiveness of different models and the accuracy of different lead-up times [7,
8], while our focus is on using inputs from the most precipitation heavy half of the year to make a
forecast in the drought-prone half of the year, taking into account the key hydrologic seasonality at
play in this region of the United States.

3 Dataset and Features

Our dataset includes the drought index, precipitation, soil moisture, and minimum and maximum
temperature.

Drought Index: The drought index dataset [9] provides global, gridded Standardized Precipitation-
Evapotranspiration Index (SPEI) values. This dataset gives 6-month temporally averaged values
from years 1900-2018 over a 0.5° resolution. The value represents the degree of drought that an
area is experiencing, ranging from -2.33 to +2.33, where a negative value denotes drier than average
conditions, and a positive value indicates wetter than average conditions.

Precipitation: The precipitation dataset is generated by Climate Prediction Center (CPC) Unified
Gauge-Based Analysis of Daily Precipitation over CONUS provided by the National Oceanic and
Atmospheric Administration (NOAA) [10]. This dataset is an interpolation of precipitation gauges
over the continental US, providing daily precipitation values at 0.25° resolution from 1948 to present.

Soil Moisture: The soil moisture dataset is generated by NASA’s Soil Moisture Active Passive
(SMAP) satellite [11]. The SMAP observatory provides a measurement of the moisture in the top 5
cm of soil everywhere in the world every 2-3 hours at a 9km resolution. The data is downloadable
as a HDF5 file and includes the latitude and longitude of each measurement. SMAP has been in
operation since January 2015.

Temperature: The maximum and minimum temperature dataset is extracted from CPC Global Daily
Surface Air Temperature provided by NOAA [12]. The data is a global GTS data and is gridded using
Shepard Algorithm. The temporal coverage is daily from 1979 to present and the spatial coverage at
0.5° resolution.

Figure 1: Contour map of the gridded drought index and soil moisture over our region on a single day.
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3.1 Data Preprocessing

In order to match the spatial resolution of our dataset, we downsampled all finer resolution datasets
to 0.5° resolution. Figure 1 illustrates an example of this difference in spatial resolution between our
drought index and soil moisture data. This downsampling was done by taking an average over all
inputs except for precipitation, where instead a sum was taken to reflect cumulative precipitation.
Our data inputs were downsampled temporally as well to output monthly values. Similar to the
spatial downsampling, over all inputs except for precipitation a temporal average was taken, with the
precipitation matrix again taking a cumulative value instead.

Across our five datasets all but the precipitation data was normally distributed, as pictured in Figure
2. To account for this, we used a lognormal transformation on the precipitation values, outputting a
normal distribution to match those of the other datasets (Figure 3).

Figure 2: Precipitation distribution pre-lognormal transformation. The normally fitted probability
density function (red line) poorly represents the true distribution captured by the histogram.

Figure 3: Histograms and fitted normal probability density functions of the data following a
lognormal transformation on precipitation.

Prior to outputting our X and Y matrices, any training example with an invalid input or prediction
value (marked as NaN) was dropped from the sample. Following this step, our X and Y matrices
were output for use in the models.

4 Methods

The preprocessed dataset is then split into an input array and an output array. The input array contains
four features: precipitation, soil moisture, and minimum and maximum temperatures. These features
are sequential, monthly averages of the “rainy season” from the beginning of November to the end of
April. In the case of precipitation, the feature represents monthly summations. The output array is
the drought index of the following dry season at each corresponding latitude and longitude.

The total number of samples available after data processing is 888. The samples are shuffled and split
into 75% training set and 25% testing set.
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4.1 Linear Regression

To provide a linear baseline upon which the LSTM could improve, we developed an ordinary least
square linear regression model in scikit-learn. For the linear regression model, the input dimension is
(training set, sequence length * input size = 24). As previously mentioned, the training set has 666
samples and the test set has 222.

4.2 LSTM Model

To take advantage of the temporally sequential nature of the weather and drought forecasting, we use
Long Short Term Memory (LSTM). The training framework is developed in PyTorch. The shape
of the input to feed into the model is (batch size, sequence length = 6, input size = 4). The model
consists of a many-to-one LSTM architecture with input size of 4 and hidden layer of 32. The next
layer is a linear layer with 32 input features and 1 output feature with bias. The formulas of LSTM
for each layer and each element in the input sequence are shown in (Eqn. 1) [13]:

(1)

Here ht is the hidden state, ct is the cell state and xt is the input at time t. ht−1 is the hidden state at
time t-1 or initial state at time 0. it, f t, gt, ot are the input, forget, cell, and output gates, respectively.
Figure 4 illustrates the structure of an LSTM unit and the many-to-one architecture.

Figure 4: Structure of a many-to-one LSTM unit.

The optimizer function used is the Adam optimizer. The number of hidden layers, learning rate, batch
size and epochs are tuned hyperparameters and will be discussed in the next section. In both the
linear regression and the LSTM model, error was evaluated using the Mean Square Error (MSE)
(Eqn. 2) [14]:

(2)
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5 Results

5.1 Linear Regression

After fitting the linear regression model to the 666 example training set, predictions were generated
for the 222 example test set. The MSE calculation yielded an error of 0.137, which is a large amount
of error for this application. It is therefore likely the linear regression model is unable to accurately
model all of the features of the drought prediction.

5.2 LSTM Model

The purpose of the LSTM model was to achieve higher drought performance than with the linear
regression model. Since the size of the dataset was relatively small, a batch size of 1 was used in
the LSTM model. This resulted in slower training, but higher performance on the training set. The
network used 32 hidden layers and a learning rate of 0.001. Training with these hyperparameters for
150 epochs yielded an MSE of 0.0149 on the training set and 0.0699 on the test set. The training
error rate is shown in Figure 5.

Figure 5: Error rate during training for the
LSTM model.

Figure 6: Predicted vs actual drought index
for the LSTM Model.

In the LSTM model, we achieve relatively good performance on our training set and worse perfor-
mance on our test set. This high variance indicates that we may have overfit our model. One solution
that could improve test set performance is using a larger dataset for training. While we have used all
available years of data for California, more data could be added by expanding our study to a larger
geographical area.

The LSTM model had a higher accuracy than the linear regression model. Further tuning of hyperpa-
rameters would likely yield a further accuracy improvement. Figure 6 shows a comparison between
the predicted and actual drought index for the LSTM model, overlaid on the mean error for the linear
regression model.

6 Conclusion

The results of our model prove the promising nature of LSTM models in hydrologic forecasting. Our
model provides a starting point for future work in drought forecasting for this region and applied
elsewhere. Promising next steps include the tuning of hyperparameters, increasing training examples
(through expanding the model over a greater area, or using higher resolution data), increasing the
sequence length (such as inputting 12 months of data versus 6), and attempting to forecast droughts
further into the future. Error analysis could also point to ways of improving our model, such as
through investigating whether performance is greater achieved for some geographical regions over
others.
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7 Contributions

Hannah worked on downloading and processing drought and precipitation data, and later preprocess-
ing steps with other data inputs to create X and Y matrices.

Mo gathered and processed the maximum and minimum temperature data, fine tuned the linear
regression model, and worked on building the LSTM training model.

Bennett gathered and processed the soil moisture data, created the initial linear regression model, and
developed the test set validation portion of the LSTM model.

Our Github repository can be found here:
https://github.com/hhampson/cs230 _where _da _droughts _at/tree/main
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