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Abstract

Despite their success in other fields, General Adversarial Networks have gained
little traction in the field of text generation due to the need to choose words to
generate at each timestep. This discrete “picking” function poses a challenge, as it
prevents gradients from being propagated from the discriminator to the generator.
In this paper, we explore an alternative method of using GANs for text generation
in which the generator works to directly output sentence encodings that can be
decoded using a pretrained decoder. While our generated sentences lack the fluency
of the language model baseline, we show that this method has the potential to
generate creative, realistic sentences and would benefit from further exploration in
future works.

1 Introduction

Generative Adversarial Networks (GANs) have become increasingly common in the field of computer
vision due to their ability to generate novel and realistic images. With the growing popularity of
open-ended text generation, it is natural to ask whether the methods used to generate images can be
extended to generate realistic bodies of text. Unfortunately, GANs have seen little success in the
field of text generation due to the discrete nature of text. The function that maps from the space
of vocabulary words to a single word is non-differentiable, which poses a challenge during GAN
training when the gradients need to pass from the discriminator to the generator.

Recent research on using GANs for text generation has focused on using reinforcement learning
and policy gradient methods to train the generator (25) (23). An alternate approach consists of
training a generator to produce sentence encodings and using a pretrained RNN decoder to decode
the encodings into human readable sentences (7). In this paper, we explore this method for text
generation.

This technique consists of first pretraining an autoencoder and then training a GAN to generate
sentence encodings that are indistinguishable from the encodings generated by the autoencoder from
real text. When training the GAN, the autoencoder’s encoder can be used to generate “real” sentence
encodings. These real encodings, as well as the encodings generated by the generator, are fed as input
into the discriminator, whose goal is to distinguish the real encodings from the fake ones. Once the
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Figure 1: GAN + autoencoder architecture adapted from (7)

GAN training is complete, the generator can be used to generate sentence encodings which can then
be decoded using the autoencoder’s pretrained decoder. We outline this architecture in Figure 1.

2 Related work

2.1 Language Modeling

Language models are commonly used for text generation. A language model outputs the probability of
each word in the vocabulary conditioned on a sequence of previous words. A number of variations of
recurrent neural network architectures (12) (6) have achieved notable performance on text generation
tasks. The introduction of transformer architectures (24) further improved on these results, and
deep stacked transformer decoders such as GPT-2 and GPT-3 (20) (4) have been shown to generate
remarkably realistic texts in a variety of domains.

2.2 Wasserstein GANs

Traditional GANs are notoriously difficult to train. The Wasserstein GAN (2), or WGAN, has been
proposed as a more stable alternative to the traditional GAN. WGANs are trained to minimize the
Wasserstein distance between the true data distribution and the distribution learned by the generator.
This minimization problem is easier to optimize than the corresponding GAN minimization problem
and has been shown to yield better results on a variety of tasks. A number of further WGAN
improvements have been proposed, including the introduction of the gradient penalty (10). We make
use of the WGAN and gradient penalty during model training.

2.3 LaTextGANs

We draw largely from (7) and (1) for our implementation. (7) trains a WGAN to directly output
sentence encodings using the Toronto Book Corpus dataset and limits their sentences to a maximum
length of 20 words. (1) explores a number of variations of the LaTextGAN architecture and reports
promising results on the SNLI and COCO datasets.

3 Dataset and Features

We use the Wikipedia movie plot dataset from Kaggle (14) to train both the autoencoder and the GAN.
This dataset contains approximately 35,000 movie summaries, comprising over 600,000 sentences,
scraped from Wikipedia. To simplify our auotencoder and GAN models, we use standalone sentences
rather than maintaining a structure of sequential sentences. We remove any parenthetical comments
in the sentences in order to simplify the sentence structure. From this cleaned set, we split our data
into train, dev, and test sets using 4,253 sentences each for the dev and test sets. At train time, we
remove any non-alphabetic characters aside from trailing punctuation and commas to further simplify
the model. Finally, we tokenize the sentences using the Keras Tokenizer and a vocabulary size of
20,000 words.
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4 Methods

We take inspiration primarily from the methods presented by Donahue and Rumshisky (7). We
first pre-train a simple RNN autoencoder on our movie summaries dataset. We train the encoder to
generate a dense context vector from a given sentence and train the decoder to recover the original
sentence from this context vector. Because we need the encoder and decoder to work independently
of one another, we do not use attention for this model. We use categorical crossentropy loss for each
word generated by the decoder and define the loss function for a given sentence to be the average
crossentropy of each word in the generated output.

Once the autoencoder is trained, we train our GAN. Following the methods proposed in (7), we use a
Wasserstein GAN, rather than a standard GAN, for more stable training (2). Both the generator and
discriminator (called the “critic” in the case of WGANs) consist of simple series of ResNet blocks.
The GAN critic takes as input a sentence encoding (either a real encoding generated by the encoder,
or a fake encoding generated by the generator) and outputs a real number that describes the “level of
realness” of the encoding. The critic loss function, J (D), is described in Equation 1, where fw refers
to the critic, and g refers to the generator.
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The goal of the critic is thus to output large positive values when given real sentence encodings and
large negative values when given fake sentence encodings. In contrast, the goal of the generator is to
make the critic predict that the fake sentences are as “real” as possible. The generator loss, J (G), is
described in Equation 2.
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After the GAN has been trained, we pass the encodings generated by the generator into the decoder
to create human-readable sentences.1

5 Results and Discussion

5.1 Autoencoder Performance

We train the autoencoder on a training set of 561,710 sentences with a maximum sentence length of
30 words. This autoencoder consists of a bidirectional GRU encoder and a standard GRU decoder.
We use 512 hidden units for the encoder and concatenate the forward and backward encoder hidden
states to create a 1024-dimensional vector that is used as input into the decoder. We train using the
Adam optimizer with learning rate α = 10−3 for 2 epochs. Table 4 in the Appendix summarizes the
performance of this autoencoder on 2,000 sentences in the validation set.

5.2 GAN Results

Because there has been little research on the optimal hyperparameters for text GANs, we evaluate
model performance using a number of hyperparameter combinations. Following the advice of (10),
models are trained using the Adam optimizer with a learning rate α = 10−4, β1 = 0.5, and β2 = 0.9.
We also add a gradient penalty with strength λ = 10 to the critic loss. We vary the number of layers
in both the generator and critic, the number of critic updates per generator update, and the maximum
sentence length of our training set. Because training GANs is notoriously difficult, we hoped that
exploring a variety of architectures would allow us to find a combination that works well for our
particular task. Additionally, we were interested in investigating how varying the maximum sentence
length would affect performance, as previous models (7) (1) typically use relatively low maximum
sentence lengths, resulting in quite simple generated sentences. We compare our results against a
language model baseline, consisting of a simple LSTM architecture with attention 2. The BLEU
scores for these models are shown in Table 1. Following the methods from (7), our base model has
40 layers in both the generator and critic and trains the generator once for every 10 critic training
iterations.
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Hyperparameter Tests
Hyperparameters BLEU-1 BLEU-2 BLEU-3 BLEU-4
Base Model 85.4 61.3 21.4 1.5
10 gen layers / 10 critic layers 84.4 55.8 14.8 0.6
20 gen layers / 20 critic layers 85.6 57.4 19.3 1.1
60 gen layers / 60 critic layers 85.4 56.2 16.7 0.8
40 gen layers / 10 critic layers 85.5 60.2 15.5 0.0
10 gen layers / 40 critic layers 86.7 59.9 21.4 0.9
5 critic iters / 1 gen iter 87.1 59.2 20.9 1.4
15 critic iters / 1 gen iter 87.6 59.2 18.4 1.0
max sent len 20 words 83.7 52.2 12.8 0.7
max sent len 10 words 70.4 34.7 4.7 0.0
RNN Baseline 94.6 84.4 66.9 40.5

Table 1: BLEU scores for sentences generated using various hyperparameters. The Base Model uses
40 generator and critic ResNet layers, 10 critic iterations per generator iteration, and a max sentence
length of 30 words. For each row label in the hyperparameter column, the rest of the hyperparameters
are equivalent to those in the base model.

We see that the base model has the highest BLEU-2, BLEU-3, and BLEU-4 scores of the GAN-based
architectures, though this model still lags in quality relative to the RNN baseline. However, we note
that while BLEU provides a quantitative measure of evaluating sentence quality, it is incomplete
as an evaluation metric. Another useful method to determine how well our generator is learning
the real data distribution is visualizing the distributions using UMAP, a dimensionality reduction
tool similar to t-SNE. These UMAP plots indicate that, while the 40 layer base model achieves the
highest BLEU score, it is unable to effectively learn the true data distribution and tends to get stuck
outputting sentences that follow a very predictable syntactical structure that is easily separated from
the real sentences. In contrast, the 10-layer model is able to better approach the distribution of the
real vectors. Further, it produces sentences that are within the distribution of real vectors and are
therefore more difficult to distinguish from real sentences by the critic. The UMAP plots of these
two models are shown in Figure 2. We refer to Table 5 in the Appendix for a further comparison of
sentences generated by our base model with sentences generated by the 10-layer model.

Figure 2: UMAP plots for a WGAN with 40 generator and critic layers (left) and a WGAN with 10
generator and critic layers (right).

Additionally, we evaluate our models using human evaluation metrics. For the reasons described
above, we choose to use the 10-layer model in our human evaluations. Evaluators were asked to rate
sentences based on their fluency using a Likert scale, with a score of 1 being “undecipherable” and a
score of 5 being “perfectly coherent.” Results of the human evaluations are shown in Table 2.

While our text GAN does not perform as well as the RNN baseline, it is important to note that the
sentences generated by our model, while often lacking in coherent content, do generally match the
syntax and structure of true sentences. To demonstrate this fact, we provide a sample of sentences
generated by the GAN along with a sample of sentences generated by the RNN baseline in Table 3.

1Model code: github.com/tassossapalidis/latextgan
2Baseline code: https://github.com/minimaxir/textgenrnn
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Human Evaluations
Text Source Fluency Score
Real Text 4.43
RNN Baseline 3.08
GAN 1.61

Table 2: Average fluency score from 30 human evaluators. 90 sentences were generated from each
model. Each evaluator was shown 15 sentences from each model, with each sentence being shown 5
times across all evaluators.

RNN Baseline
He is then attacked by indians, and they attempt to escape.
8 years later, the young boy, is a simple and western person.
Jerry helps quacker and sally, but are getting arrested.
GAN
To melinda falls aboard bartok when escapes the two gun, they warns it to be police.
The lover, tony is attracted with jeffrey, who realizing his parents mother seeing bruce <unk>.
Tamura, engages to two henchmen, and sends the bandits <unk>, steps in a man with richard
simon.

Table 3: Sentences generated from a simple word-level RNN with attention (top) vs. sentences
generated by our 10-layer GAN (bottom)

Another pattern to note is that we are often unable to train our models to optimality. It has been
shown that Wasserstein GANs have much more stable loss curves than traditional GANs and that,
in contrast to standard GANs, WGAN loss is correlated with generation quality. (2) shows that for
image generation tasks, the generator loss tends to start relatively high and proceeds to converge
to 0. As the loss decreases, image quality increases. Our models exhibit analogous behavior at the
beginning of training, but the generator loss becomes volatile before converging, leading to a decrease
in generated sentence quality. The loss curves associated with this phenomenon are displayed in
Figure 3 in the Appendix. This behavior indicates that the model architectures investigated here may
not be ideal for this task and that more exploration into GAN model architectures for text generation
tasks is necessary.

6 Conclusion and Future Work

We have demonstrated the potential of a GAN architecture that circumvents the discreteness problem
of GAN usage in text generation and avoids the use of reinforcement learning techniques. While
our model does underperform relative to a traditional attention-based RNN, it is able to generate
sentences with some degree of structure, coherence, and consistent context. We hypothesize that
training instability is the primary cause of the limitations of this model’s output; other authors studying
networks with this architecture were successful in stably training their models for more iterations than
we were able to reach with our model (7) (1). We conclude that we have demonstrated the plausibility
of using GANs for text generation tasks, but further research must be done on stabilizing the training
of these text generation GANs. In particular, we believe future work should focus on optimizing
the loss penalty to maintain the 1-Lipschitz constraint required for theoretical convergence while
allowing for more stable empirical convergence.

We conclude with a theoretical motivation for expanding this work from generating stand-alone
sentences to generating bodies of text. One could implement a conditional model, where the generator
conditions on the t− 1 previously generated context vectors when generating a sentence vector at
timestep t. This process could continue until the generator outputs an “end of sequence” token, at
which point the entire sequence of context vectors could be passed to the critic. The loss functions
in this model would be analogous to those in equations 1 and 2, but the critic would instead make
its predictions on sequences of sentences, rather than individual sentences. This could allow for the
generation of complete, novel stories. We were unable to explore this idea in this work due to time
constraints, but we hope to do so in the future.
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7 Contributions

All members of the team generally contributed to all aspects of the project, but each member was
more involved in certain areas than others. Anna Shors took the lead on initial topic research, wrote
the majority of the model training code, and handled much of the hyperparameter research and tuning.
Andrew Freeman was also heavily involved in hyperparameter research and tuning, while taking the
lead on data preprocessing, creating a system for human evaluations, and creating visualizations of
model results. Anastasios Sapalidis is responsible for quantitative model metrics, writing much of the
model code, management of the GitHub repository, and code cleaning.
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8 Appendix

Autoencoder Performance

Autoencoder Performance
BLEU Metric Score
BLEU-1 86.2
BLEU-2 81.2
BLEU-3 77.2
BLEU-4 73.8

Table 4: Averaged BLEU scores for 2,000 encoded/decoded sentences from the validation set

Sample Sentences

Table 5 provides a sample of sentence generated by the base model and a sample of sentences
generated by the GAN with 10 layers for both the generator and critic. Notice that the structure of the
sentences in the 40-layer base model is quite predictable. In contrast, the sentences generated by the
10-layer model vary more in structure and appear more creative than those from the base model.

Base GAN model
It is further affair by harry to <unk> desires the inebriated murderer to order to lili dan.
To vote to the carrier john and alter meets the wrong person to the us eventually escort.
To daylight to <unk> snyder, edmund is regarded and revives him to place the tracks brutally.
As she to be followed to anton to leaves lucy with wilder s father the rangers in kensington
mexico.
Yamamoto upon to kwan at gary as zhang is recovers with attacked, goes with the loose blood.
10-layer GAN
When anupama was raghu he initially dismissed from when eva, child vanishes, and meanwhile
saves anbu in constable.
To brinda comes that fights to agree and harry believes jerry will end as frank hesitates.
The jackal swims insane suspicious saito, and frustration, shooting mary demanding the deal
to life people.
When the nerdy night gifts to knife, princess and virginia, tommy with danny gun to <unk>.
That and haddad, is are halted the house when the village is helping, she destroys village when
suddenly it.

Table 5: Sentences generated using the 40-layer base GAN (top) vs. sentences generated by the
10-layer GAN (bottom)

Loss Curves

Figure 3: Generator and critic loss during training of the base model
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