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Abstract

Understanding the impact of the built environment and urban populations on climate change and
air quality is a growing challenge as the percentage of the world’s population that resides in urban
areas continues to rise. In particular, human activity levels have been shown to be directly linked
with ground-level ozone, which is responsible for several health and climate effects. We explore this
relationship through the use of a multimodal learning architecture that predicts ozone concentrations
(parts per billion) in urban areas from satellite and street-level imagery. The model comprises two
Convolutional Neural Networks (CNN), one trained on satellite images of each location to learn
higher-level features such as geographical characteristics and land use, and another trained on multiple
street-level images of each location to learn ground-level features such as motor vehicle activity. The
feature representations learned from each sub-model are concatenated and passed through several
fully connected layers to predict the ozone level of the location. This concatenated model achieves a
test RMSE of 11.70 ppb. This approach can be used to inform urban planning and policy by providing
an insight into the particular urban features that aggravate ozone concentrations.

1 Introduction

Air Quality Ozone (O3) is one of the air pollutants with the strongest evidence of associated health risks [[18]], and is
used by several countries in their computation of air quality indices. As a secondary pollutant, it is not directly emitted
into the air but rather formed as a result of chemical reactions between nitrogen oxides and volatile organic compounds
such as methane and carbon monoxide. In turn, the presence of these primary pollutants is highly associated to human
activity levels and can be aggravated by features of the physical landscape resulting from inadequate urban planning
[18]].

The Urban Landscape Although less than 3% of global land surface is classified as urban, these areas house over 50%
of the world’s population today and this percentage is expected to increase in the coming years. Characterizing the
relationship between specific features of the urban landscape and ozone concentrations is thus essential to inform policy
and urban planning decisions in order to build more sustainable and resilient environments.

Proposed Model In this work we use a dual-input CNN approach to characterize the relationship between ozone
concentrations and learned urban features such as land use patterns, geography, buildings, and traffic and motor vehicle
patterns. Existing work describes the use of machine learning to forecast air quality measurements over time or
characterize the relationship between air quality and weather patterns, but there is a lack of literature surrounding the
use of imagery to quantify air quality in urban centers. In addition, related works have used CNNss to predict land use
classification and socioeconomic features using satellite imagery or street-view imagery separately, but we implement a
dual-input model where the features from both types of images are concatenated to predict ozone concentrations in an
urban location.



2 Related work

CNNs and Satellite Imagery. The application of CNNss to satellite imagery has been well-explored in recent years,
particularly to predict land use classification. Examples of this include Castelluccio et al. who trained a CNN on the
UC Merced Land Use dataset [15] and Bragilevsky et al. who trained a CNN on imagery of the Amazon Rainforest [4].
Albert et al implemented transfer learning to predict land use classification in urban areas [3|.

Experiments in recent years have also extended the use of CNNs on satellite imagery to extract information about social
and economic features of the physical landscape. For example, Oshri et al. use a ResNet pretrained on the ImageNet
dataset to predict infrastructure quality in Africa [19], Maharana et al. developed a CNN pretrained on ImageNet to
predict neighborhood crime rates [14], and Perez et al. developed a dual-input model trained on nighttime and daytime
satellite imagery and pretrained on ImageNet [22].

CNNs and Street-View Imagery. Literature on the application of CNNss to street-level imagery is much more limited.
One similar work by Gebru et al. proposes a CNN trained on Google Street View imagery to predict demographic
characteristics at the neighborhood level such as race, income, and voting patterns, pretrained on ImageNet [6].

Emissions Predictions from Sensing Data. There have been several studies on the use of machine learning directly
on air pollution sensor measurements, typically to make short-term air pollution forecasts ([5], [17]]) or to understand
the relationship between air pollutants and weather patterns [11]. However, to the best of our knowledge, there is no
work that aims to use Deep Learning to understand the relationship between air quality and urban features by predicting
measurements from satellite or street-view imagery.

Novel Contributions. This paper adds to the current body of work with two novel contributions: the first, to understand
the relationship between features of the urban landscape and air quality, specifically ozone concentrations, and the
second, to use a dual-input multiscale approach with both satellite and street-level imagery of urban areas.

3 Dataset and Features

The predicted labels for our dataset are ozone level measurements in parts per billion (ppb). The inputs for our dataset
comprise a set of satellite images and a set of street-level images.

3.1 Ozone Measurements

The ozone dataset was constructed by scraping data from the AirNow API [2], which centralizes data from air quality
agencies in the U.S., Canada and Mexico and data provided by U.S. Embassies and Consulates on monitoring sites
around the world. AirNow also reports the U.S.” Air Quality Index (AQI), which classifies the level of health concern
into six categories ranging from ’good’ to "hazardous’ according to a location’s pollutant levels. Ozone measurements
were gathered in ppb for each monitoring site on an hourly basis for the year 2020, and averaged to obtain an annual
ozone level for each site. We use the annual ozone level in a location in order to eliminate seasonal variations in
pollution, which prompts our model to learn about urban features that are associated with a baseline level of pollution
for each location.

Our primary dataset comprised 2020 average ozone levels for 1,423 unique global monitoring sites. As a form of data
augmentation, we used monitoring site to U.S. zip code and monitoring site to U.S. county mappings in order to expand
the size of our dataset and obtain information at a more granular level across locations in the U.S. This preprocessing
increased our dataset to 12,976 semi-unique locations with ozone level information. This augmentation modified the
geographic distribution of our dataset, with over 89.5% of data points being located in the U.S. A summary of statistics
on the ozone readings dataset is reported in the Appendix in Table[5]

3.2 Satellite and Street-Level Imagery

The satellite imagery dataset was constructed using the Google Earth Engine API. For each location labeled with an
ozone reading, we retrieve one satellite image centered at that location from the Landsat 8 Surface Reflectance Tier
1 Collection with a resolution of 224 x 224 pixels which represents 6.72 km x 6.72 km. We use 7 bands from this
collection: RGB, ultra blue, near infrared, and two shortwave infrared bands. We preprocess each of our images by
adding a cloud mask per pixel and then computing the per pixel and band mean composite of all the available images
for the year 2020. As a consequence of the cloud masking process, around 5.7% of our images have missing pixels
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that were clouded during all of 2020, so we impute those pixels with the per channel mean of the image. Among the
affected images, on average only 0.22% of the pixels were fully clouded, and the most affected image had about 5% of
its pixels clouded. Landsat 8 has a resolution of 30 meters and our patches have dimensions 6.72 km x 6.72 km, so our
images contain 224 x 224 pixels, and 7 channels.

The street-level imagery dataset was constructed using the Google Maps Street View API. For each location labeled
with an ozone level, we randomly sample 10 geospatial points within 6.72 km from the measurement point. For each
point we retrieve an image with a resolution of 224 pixels and a field of view (FOV) of 120 which represents the widest
zoom, filtered for outdoor images. Each image has dimension 224 x 224 x 3, where the 3 channels represent RGB.

Table 1: Data points of locations with the lowest and highest ozone levels

Rangoon, Myanmar Mojave National Preserve, U.S.
Ozone Level (ppb) 8.15 54.14
Ozone AQI good moderate

Satellite Street Satellite Street

vy

Image sample Z Y

L
-
g,

Google

Note: Images have size (224, 224, C) but have been resized for visualization purposes

Satellite and street-view images were mapped to an ozone reading using a unique identifier of the location. Satellite
images were available for all locations, while street images were available for 99.7% of locations. We used a split of
85% Train, 7.5% Validation and 7.5% Test in order to randomly generate the following datasets. These splits were built
for the satellite and street-level imagery such that they both share the same locations in each split.

Table 2: Summary statistics of the image datasets

Dataset Resolution Train Validation Test Total
Examples Examples Examples Examples

Satellite 224 x 224 x 7 11,029 973 974 12,976
Street-View 224 x 224 x 3 109,609 9,658 9,627 128,894

4 Model Architecture and Methods

We train the two CNNs separately on the satellite and street-level imagery, both using a ResNet-18 architecture
implemented in PyTorch [20] and pretrained on the ImageNet dataset. The models are trained separately as the nature of
the features they need to learn to associate with ozone concentration is quite different for each dataset. Transfer learning
is used for both CNNs to leverage lower-level features learned on the ImageNet dataset. The ResNet-18 architecture
was slightly adapted for our particular task; in the case of the satellite imagery, the CNN’s input layer was modified to
accommodate for the image’s seven channels and was initialized using Kaiming initialization [10].

Due to overfitting concerns, we experiment with adding Dropout and additional Fully Connected layers at the end
of the model, prior to a final layer consisting of a single neuron outputting the location’s ozone concentration (ppb).
For the prior layers, we keep the BatchNorm layer that the ResNet-18 architecture uses after each convolution and
prior to activation, which has an implicit regularization effect. We also use data augmentation to combat overfitting.
Satellite images are loaded applying random horizontal and vertical flips, and a random rotation of up to 20 degrees.
These transformations leverage the fact that these different spacial visualizations remain true to the location’s physical
representation. Due to the nature of the street imagery only random horizontal flips were used for data augmentation.

After training both CNNs separately to predict the ozone reading for each location, we extract 512 features for each
satellite and each street image. These are concatenated to create a feature vector of size 1, 024 representing the satellite
image and a particular street view of a given location. We then train a Concatenated Feedforward Neural Network (NN)
using these multiple representations of each location to predict the location’s average ozone level in 2020.

3



Figure 1: Model Architecture
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When training the CNN on the satellite imagery, we tuned several hyperparameters including the optimizer, the batch
size and the learning rate, holding other hyperparameters constant. We also experimented training satellite images with
and without cloud masking. Although the models using satellite images without cloud masking generally performed
better on the validation set, we chose to use the images with cloud masking as it prompted the model to learn about
the urban features of the location rather than potentially learn from weather patterns or visible pollution to predict
ozone levels. We then chose the best hyperparameters based on their RMSE on the validation set. The hyperparameters
selected as per this criteria were the Adam optimizer, a batch size of 64, and a learning rate of le-3. To reduce
overfitting, we added dropout and tuned both the dropout rate and the number of additional layers with dropout. The
model including one additional dropout layer with a rate of 0.5 was selected as it reduced overfitting the most. The final
hyperparameters for the satellite model were selected as described in Experiment 8 in Table[6]

To train the CNN on the street-level imagery, we began with the best hyperparameter values from the model trained
on satellite imagery and added an additional hyperparameter to control the number of pretrained ResNet18 layers to
freeze in order to reduce model runtime. Increasing the number of frozen layers had a regularizing effect and reduced
overfitting. We also tuned the number of examples per grid cell location as a form of data augmentation to improve both
train and validation accuracy. The best hyperparameters were selected as the values from Experiment 13 in Table [6]

To tune the final neural network on the concatenated feature encoding from both the satellite and street-level CNNs, we
began with the best hyperparameter values from previous experiments and tuned the model architecture, dropout, and
the activation function. To tune the model architecture we experimented adding 1, 2, and 3 fully connected layers. To
tune dropout we tested a rate of 0.5 and 0.75. Finally, we tuned the activation function by testing both ReLU and Tanh.
The best model was selected as Model 16 in Table

6 Results/Discussion

Table 3] presents the performance of each of the CNN submodels and the concatenated NN on the test set as measured
by RMSE. The Satellite model registers better performance on a standalone basis with a test RMSE of 12.48 ppb,
compared to the Street-level model’s RMSE of 20.64. This may be driven by the increased complexity of capturing the
general urban characteristics of a region from a single ground-level view. Moreover, we found that in the case of several
locations, the monitoring site could perhaps be far from an urban center or the 6.72 km radius used to sample images
of the environment surrounding the measurement site could have been too large for these locations. This resulted in
various images which mostly reflected more rural views of the outskirts of urban locations from which our model could
not have been able to associate urban features and ozone measurements. The concatenated model appears to have
mainly leveraged the information from the satellite image of each location, coupled with some information from a
sample street-level image of the location, and presented a test RMSE of 11.70 ppb.

To contextualize this error, we recall that ozone levels in the dataset fall in the range [8.15, 54.14]. Locations with levels
falling in the [0, 50] range are classified as having *good’ ozone AQI, while those in the (50, 100] range are classified as
’moderate’, indicating that a population sensitive to ozone may begin to present adverse health effects. No data points
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are available with an annual average superior to 54.14 ppb, as this would have required the location to sustain such
levels throughout a large portion of 2020. This limits our ability to evaluate the model on a wider range of levels of
health concern and to discern between locations that can be susceptible to having more concerning ozone levels.

Table 3: Test performance for final CNN submodels and concatenated NN

Satellite Model  Street-level Model Concatenated Model
Test RMSE (ppb) 12.48 20.64 11.70

An analysis of the concatenated model’s prediction errors indicates that the errors are approximately Normally
distributed, with errors centered around zero and primarily falling in the [—3, 3] ppb range. The model’s predictions
seem to largely follow the distribution of ozone levels in the test dataset, as evidenced in Table[7} As observed in
Table 8] our model is best at predicting moderate ozone levels in the range [25, 30], and performs more poorly when
predicting extreme levels in the ranges [15, 20] and [35, 55]. With 50% of the data pertaining to locations with ozone
levels in the range [25.55, 30.72], the model’s performance could be attributed to the challenging task of discriminating
between the urban features belonging to locations with very similar levels as summarized by an average annual ozone
reading. As observed in Table[d] the model does not seem to systematically perform predictions with high error rates
for particular regions. However, it may be observed that locations with high absolute error rates tend to be clustered
together, reflecting the fact that if a region in general has extreme levels, our model will generally perform poorly on the
locations within the region.

Table 4: Geographic distribution of ozone reading errors (ppb) and absolute errors (ppb)

o

Note: The randomly-generated test set did not include any of the few locations outside of North America.

7 Conclusion/Future Work

In this work, we explored modeling the relationship between urban features and ground-level ozone concentrations
through the use of satellite and street-level imagery. This is a challenging task, as it requires the model to automatically
identify complex urban characteristics such as transport infrastructure, the presence of industrial facilities and the
level of motor vehicle activity, and to associate them to an average ozone reading in an effort to capture a location’s
nonseasonal pollution level. The features extracted from the satellite images were more successful in reflecting this type
of information when compared to the street images; however, our high test RMSE of 11.70 ppb on the concatenated
features underlines the challenging nature of this problem.

Several improvements and explorations could be performed in future work to obtain a more accurate portrayal of the
association between urban features and ozone levels. Modeling this relationship more explicitly through the use of
object detection methods and pre-trained models used to classify land use could aid in better understanding what type of
urban characteristics drive higher pollution. It could also be beneficial to extract multiple pollution measures from each
location in order to model their joint distributions. Lastly, the use of ozone and satellite image data disaggregated in
time, as opposed to averaged over a full year as in this work, could also be helpful. This could widen the range of ozone
readings observed by the model and help it understand the role urban features may play in locations with concerning
ozone levels, even if these take place only for a few periods throughout the year.
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8 Contributions

All three members of the team contributed to each aspect of the project, but each focused more on different areas.
Nicolas focused on gathering and preprocessing the satellite imagery dataset including performing cloud masking as
well as image visualization, Nina focused on gathering the street-view imagery dataset and running experiments for
hyperparameter tuning, and Andrea focused on gathering and preprocessing ozone emissions data as well as taking the
lead on the code for the CNN and NN model definitions and final error analysis. All team members contributed to the
literature review, proposal, milestone, and final reports.
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A Appendix
A.1 Dataset information

Table 5: Summary statistics of the ozone readings dataset

Location type =~ Examples Mean (ppb) Std. Dev. (ppb) Minimum (ppb) Maximum (ppb)

Monitoring site 1,423 28.75 5.63 8.15 54.14
Zipcode 11,095 28.25 3.96 8.26 46.77
County 548 29.57 6.22 8.15 4943
Total 12,976 28.35 4.28 8.15 54.14

A.2 Experiments for Hyperparameter Tuning

Table 6: Hyperparameter search for the Satellite and Street CNNs, and the Concat NN

Experiment Examples  Batch Learning - Batch P Num Frozen Cloud Train Dev
Number Model per location size rate Epochs  Optimizer Dropout Norm Activation Pretrained Layers Masking RMSE RMSE
1 Satellite 1 64 le-3 100 Adam None Yes ReLU 0 No 0.3 15.1
2 Satellite 1 64 le-3 100 RMSProp None Yes ReLU 0 No 1.6 18.3
3 Satellite 1 64 le-3 100 SGD None Yes ReLU 0 No 1.1 20.4
4 Satellite 1 32 le-3 100 Adam None Yes ReLU 0 No 0.2 15.0
5 Satellite 1 128 le-3 100 Adam None Yes ReLU 0 Yes 0.4 134
6 Satellite 1 64 le-4 100 Adam None Yes ReLU 0 No 0.3 123
7 Satellite 1 64 le-3 100 Adam 1 layer (p=0.5) Yes ReLU 0 No 10.5 10.1
8 Satellite 1 64 le-3 100 Adam 1 layer (p=0.5) Yes ReLU 0 Yes 5.6 12.7
9 Satellite 1 64 le-3 100 Adam 1 layer (p=0.75) Yes ReLU 0 No 13.8 1.1
10 Satellite 1 64 le-3 100 Adam 2 layers (p=0.5) Yes ReLU 0 No 11.9 12.9
11 Street 1 64 le-3 100 Adam I layer (p=0.5) Yes ReLU 62 N/A 18.6 18.9
12 Street 1 64 le-3 100 Adam 1 layer (p=0.5) Yes ReLU 31 N/A 29 222
13 Street 5 64 le-3 100 Adam 1 layer (p=0.5) Yes ReLU 62 N/A 17.8 16.4
14 Concat (1 FC) 5 64 Te-3 100 Adam None No ReLU N/A N/A 10.9 7.7
15 Concat (2 FC) 5 64 le-3 100 Adam None No ReLU N/A N/A 5.6 12.5
16 Concat (2 FC) 5 64 le-3 100 Adam 2 layers (p=0.75) No ReLU N/A N/A 9.9 13.0
17 Concat (3 FC) 5 64 le-3 100 Adam 2 layers (p=0.75) Yes ReLU N/A N/A 8.4 10.4
18 Concat (2 FC) 5 64 le-3 100 Adam 2 layers (p=0.5) Yes ReLU N/A N/A 8.9 12.7
19 Concat (2 FC) 5 64 le-3 100 Adam 2 layers (p=0.5) Yes Tanh N/A N/A 9.9 10.9

A.3 Additional Results Visualizations

Table 7: Test set distributions of ozone labels and ozone predictions from the concatenated feature representations
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Table 8: Test set distribution of ozone reading errors and relationship to ozone labels
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