
Generation of Realistic Facemasked Faces With GANs

Samuel Mumford (smumfor2@stanford.edu)

March 18, 2021

Abstract

Facial recognition and identi�cation are key aspects of modern technology and are
impeded by the advent of facemasks to combat to Covid-19. Large datasets of masked
faces are needed in order to improve facial identi�cation with masks. Such datasets may
be produces using generative adversarial networks. In this work, realistic pictures of faces
with facemasks are generated using a CycleGAN model. A less computationally intensive
SimGAN model is also used as a point of comparison. The generated pictures of faces with
masks can be used for facial identi�cation and mapped back to the original face with a
.2% error rate, demonstrating the usefulness of GAN models in face recognition.

1 Introduction
Facial identi�cation is a benchmark problem in convolutional neural networks[1][2]. Corre-
spondingly, there are many established datasets of faces used to train models[3][4]. However,
the recent adoption of facemasks to slow the spread of Covid-19 creates a facial recognition
challenge without large datasets of masked faces. Masked facial identi�cation thus necessi-
tates taking large quantities of new data[5]. Alternatively, pictures of unmasked faces can be
converted to pictures of masked faces with generative adversarial networks (GANs). In this
work, I demonstrate the performance of two GANs in converting pictures of faces into masked
faces and the corresponding consequences on facial recognition.

2 Datasets

Figure 1: Example face pictures to be used for training and evaluation[6][7]. Note that
the arti�cially added masks are uniformly blue masks and exhibit rare problems such as
discontinuous features and mishandling of real-world objects.

A dataset of 67,193 masked faces[7], in turn formatted to work alongside a dataset of 70,000
faces[6] was used. The dataset of masked faces contains arti�cial facemasks superimposed
onto faces as shown in Fig. 1 instead of true facemask pictures[7]. In order to transfer �les and

1



train more quickly, a subset of 2000 train and 1000 test images was used from each of these
larger datasets. There was no evidence of model over�tting or a train/test set mismatch in
model performance, and so the reduced dataset was su�cient.

3 Model 1: CycleGAN
CycleGAN models have been used for tasks such as converting pictures of horses to zebras
with better performance than similarly structured GAN models[8][9]. A CycleGAN approach
correspondingly was used to add masks to face pictures. CycleGAN loss primarily consists of
GAN loss with a two trained discriminators DX and DY and generators G and F . The GAN loss
used on one generator-discriminator pair evaluated on X and Y with nx and ny examples is,

LGAN (G, DY , X , Y ) =
1[y from Y]

ny
ln [DY (y)] +

1[x from X]
nx

ln [1 − DY (x)]. [3.1]

Additionally, a cycle loss term penalizes unnecessary image changes. The cycle loss[8]

Lcyc(G, F , X , Y ) =
1[x from X]

nx
||F (G(x)) − x||1 +

1[y from Y]
ny

||G(F (y)) − y||1 [3.2]

evaluates the distance between the original image and the result of attempted mapping of that
image into the complimentary dataset and then back into the original dataset. The full loss
with cycling parameter � is L = LGAN (G, DY , X , Y ) + LGAN (F , DX , Y , X ) + �Lcyc(G, F , X , Y )
and was used for training in an Adam optimizer[10].

Figure 2: Results of the �nal CycleGAN model applied to the �rst �ve initially maskless
pictures. Masks remain slightly transparent, but transparency has been signi�cantly reduced
by reducing �.

A CycleGAN model was trained to add masks to unmasked faces[8][11]. As described in[8],
generator networks were formed from three initial convolutions, nine 64-channel convolutional
ResNET blocks, two fractionally strided convolutions, and a �nal convolution to reduce
output to three channels. The discriminator CNN is evaluated on overlapping 70x70 image
patches[8][12]. Three convolutional layers with a stride of two are applied to each image patch
to increase the activation depth and reduce activation width. The reshaped intermediate layer
is �attened and fed into a fully connected single neuron sigmoid output[8][12].

The CycleGAN model was trained to produce realistic facemasked images. No changes were
needed in the base implementation other than formatting pictures into the required folder
structure and tuning hyperparameters[11]. Model performance and training e�ectiveness were
evaluated by Fréchet inception distance (FID)[13]. Examples of the best performing model
are displayed in Fig. 2, and earlier generations of training are provided in Appendix A. Model
performance improved dramatically with adequate monitoring and training time as shown in
Table 1. The largest improvement to performance came from increasing training time under
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the default parameters. This is to be expected as the default parameters were established on
similar style transfer problems. However, performance deteriorated with increased training
time after 35 epochs, suggesting that the learning rate was too high. Reducing the learning rate
to slowly converge on optimal performance and reducing � to make the masks less transparent
yielded generated images which are di�cult to distinguish from the base dataset images and
train/test FID scores of 28.43/28.48, demonstrating the e�ectiveness of the CycleGAN approach.

Training Procedure Additional Epochs Trained Train FID Test FID

Initial (� = 2E − 4, � = .5) 10 78.1 78.3
Reduced � = .005 7 149.1 150.0

Continued Training 25 42.45 42.02
Continued Training 10 48.56 48.73

Reduced � = 2.5E − 5 20 31.14 30.06
Reduced � = .1 30 28.43 28.48

Table 1: Outline of the training procedure used to produce a �nal model with results shown in
Fig. 2. Note that � is used to denote the learning rate. The model displays low variance and
improved performance after prolonged and tuned training.

4 Model 2: SimGAN
Although the CycleGAN approach produces high-quality masked faces, it requires high com-
putational power and time to train. A faster-training model using only one generator and
discriminator could be useful in mobile applications. A SimGAN model penalizes changes to
the original image x , giving an additional loss term Limg(G, X ) = ||G(x) − x||1 and total loss
with penalty factor � of L = LGAN (G, D, X , Y ) + �Limg . This simpler loss function does not
require a second generator-discriminator pair and can be evaluated using fewer than half as
many forward passes as the CycleGAN loss.

Alternate loss and model structures were considered. A CoGAN model is also based on coupled
generators and maps inputs to a feature vector z for every test example, which increases
computational cost and creates blurry images when generalizing[14]. Such feature mapping
is also an issue for BiGAN/ALI models[15][16]. A SimGAN model therefore was chosen as a
lower-cost alternative among the commonly used image generation models[8].

SimGAN was implemented convolutionally for both the discriminator and generator models.
Signi�cant changes were made to the base implementation to accommodate new images,
account for updates to TensorFlow, and improve performance[17][18]. First, the dataset
structure and batch loading were rebuilt to accommodate multi-channel images of variable
size and a new data structure. Second, a �attening and fully-connected layer were added to the
discriminator model to accommodate images with variable sizes. Third, batch normalization
layers were added to each ResNet block[19] in the generator and before the fully connected
layer of the discriminator network to avoid exploding gradients. Fourth, Adam optimization
was implemented[10]. Finally, the discriminator was frozen during generator training. The
best SimGAN generator network consisted of an initial channel-altering convolution, eight
64-channel ResNET blocks, and a �nal convolution to change output to three channels. The
best discriminator model consisted of �ve convolutional layers, two pooling layers, �attening,
and a �nal fully connected layer to outputs.
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Figure 3: Results of the best SimGAN model trained, yielding Train/Test FID scores of
169.14/136.55. Masks were added to the correct locations on faces, but there are unrealis-
tic changes made to the edges of pictures and other facial features.

Training Procedure Additional Epochs Trained Train FID Test FID

Initial (� = 1E − 4, � = 2E − 4) 20 307.5 217.8
Reduced � = 8E − 4 20 370.8 270.1
8 ResNET Blocks 8 319.4 233.7

Reduced � = 1E − 5 30 199.39 163.58
Reduced � = 3E − 6 50 169.1 136.6

Doubled D Update Rate 20 173.7 137.3
Increased D Layers 30 217.6 139.2

Table 2: Outline of the training procedure used to produce a �nal model with results shown in
Fig. 3. Training in the initial 4 ResNET block model occurred at a rate of 8 epochs per hour,
while the 8 ResNET block trained at around half that rate. The initial 8 ResNET block model
was trained for more than 8 epochs, but produced cyclical results and was stopped early, giving
8 e�ective epochs of training.

A variety of training parameters and architectures were explored, with results of earlier models
shown in Appendix B and example outputs of the best SimGAN model shown in Fig. 3. The
most signi�cant improvements to performance were caused by changing � , � , and the generator
model size as seen in Table 2. The penalty � was reduced to account for larger 3-channel
RGB images and allow the generator to add blue features as seen in Fig. 11. However, the
discriminator loss was consistently low and generated images were distorted but not mask-like,
and so the generator model was doubled to eight ResNet blocks. This incurred the largest
improvement in performance, as seen in the di�erence betwen Fig. 11 and 12. Training with a
base � = .0001 became cyclical as generator results alternated between blue masked faces or
bare faces with a period of ≈ 20 epochs after increasing generator power. This was remedied
by early stopping and then reducing � by a factor of 10. However, performance remained poor
when compared to the CycleGAN and exhibited high discriminator loss after hyperparameter
tuning. Changing the ratio of the discriminator to generator update steps, altering the SimGAN
penalty, reducing learning rate, and increasing the number of layers in the discriminator model
did not signi�cantly improve performance. Performance likely could be improved by training
larger discriminator and generator models, but such additional power would defeat the purpose
of the SimGAN as an alternative to the functional CycleGAN model.

5 Application: Toy Model of Facial Recognition
Facial recognition and veri�cation programs must be altered in order to recognize faces with
masks reliably. A �rst approach to facial recognition with masks was to remove encoding
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projections along the mask feature axis. Given a face picture p(i)f ace , an analogous mask picture
p(i)mask was produced by the CycleGAN. Picture encoding vectors e(i)f ace and e(i)mask were then
produced by feature-extracting neural networks such as the Inception network[13][20] or a
VGG19 network[21]. The face-mask bias vector f de�ned over m picture pairs was therefore

f = 1
m

m
∑
i
(e(i)mask − e(i)f ace) → f̂ = f

||f ||2
. [5.1]

Finally, encodings e′(i)f ace and e′(i)mask were produced by removing the encoding projection onto f̂ .

The di�erence between feature encodings were evaluated by cosine similarity, denoted as
cos(e′(a)f ace , e′(b)mask) for base images a and b in Table 3. The cosine similarities of pictures of the
same face and di�erent faces must be distinct to perform facial recognition. As seen in Table 3,
appropriate encoding network choice and projected mask removal improved facial recognition
performance. The distributions of pictures of the same face and di�erent faces were separated
by 2.677 � after debiasing, giving a 2% error rate.

Approach Encoding cos(e′(i)f ace , e′(i)mask) cos(e′(i)f ace , e′(j)mask) Di�erence in � Error Rate

Baseline Incep. .963 ± .021 .904 ± .037 1.367 .149
Bias Projection Incep. .970 ± .019 .906 ± .041 1.416 .147
CycleGAN Strip Incep. .989 ± .009 .901 ± .043 2.003 .047

Baseline VGG19 .768 ± .064 .569 ± .079 1.957 .082
Bias Projection VGG19 .890 ± .036 .660 ± .078 2.677 .022
CycleGAN Strip VGG19 .945 ± .024 .654 ± .080 3.352 .002

Table 3: Performance of facial recognition using CycleGAN-produced mask pictures. The error
rate is de�ned assuming a Gaussian distribution in cosine similarities and placing the facial
recognition threshold equidistant from the centers of each distribution in standard deviations.

The de-masking generator of the CycleGAN was also used to remove facemasks with results
shown in Table 3. The CycleGAN generator outperforms the bias projection method, yielding
a .2% error rate. Such improvement in performance can be explained by the �exibility of a
CycleGAN model over bias projection. The CycleGAN can remove masks regardless of facial
angle or underlying facial expression while bias projection only accounts for the average
features of masks. However, using a trained CycleGAN model to remove masks is more
computationally expensive and a larger change to standard facial recognition algorithms.

6 Conclusions
A CycleGAN model may be trained to produce realistic images of faces with facemasks
much has been done in other style transfer problems. It is also possible to make �awed but
recognizable facemasked pictures with a SimGAN model with one tenth of the number of
parameters of the CycleGAN model and half the number of generators and discriminators. A
corpus of arti�cially masked pictures can also improve the performance of facial recognition on
new masked pictures. Such generative and facial recognition techniques must be generalized
to pictures of real faces with a variety of masks in order to be practically applied.

5



References
[1] S. Lawrence, C. L. Giles, Ah Chung Tsoi, and A. D. Back. Face recognition: a convolutional

neural-network approach. IEEE Transactions on Neural Networks, 8(1):98–113, 1997.

[2] Yi Sun, Ding Liang, Xiaogang Wang, and Xiaoou Tang. Deepid3: Face recognition with
very deep neural networks, 2015.

[3] Gary B Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in
the wild: A database for studying face ...

[4] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

[5] Samp;T Public A�airs. News release: Airport screening while wearing masks test, Jan
2021.

[6] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. CoRR, abs/1812.04948, 2018.

[7] Adnane Cabani, Karim Hammoudi, Halim Benhabiles, and Mahmoud Melkemi.
Maskedface-net – a dataset of correctly/incorrectly masked face images in the context of
covid-19. Smart Health, 2020.

[8] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks, 2020.

[9] Adrian Rosebrock. Covid-19: Face mask detector with opencv, keras/tensor�ow, and
deep learning, Jun 2020.

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[11] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation
with conditional adversarial networks. InComputer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on, 2017.

[12] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation
with conditional adversarial networks, 2018.

[13] Maximilian Seitzer. pytorch-�d: FID Score for PyTorch. https://github.com/
mseitzer/pytorch-fid, August 2020. Version 0.1.1.

[14] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks, 2016.

[15] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin
Arjovsky, and Aaron Courville. Adversarially learned inference, 2017.

[16] A.A. Efros and T.K. Leung. Texture synthesis by non-parametric sampling. Proceedings
of the Seventh IEEE International Conference on Computer Vision, 1999.

[17] Aymen B Bothmena. Simgan implementation using tensor�ow/keras, Apr 2019.

[18] Ashish Shrivastava, Tomas P�ster, Oncel Tuzel, Josh Susskind, Wenda Wang, and Russ
Webb. Learning from simulated and unsupervised images through adversarial training,
2017.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition, 2015.

6

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid


[20] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition, 2015.

A Previous Generation Outputs of CycleGAN

Figure 4: Training on initial parameters. Note that the masks are amorphous, semi-transparent,
and often placed in the wrong location.

Figure 5: Training with reduced �, showing worsening cycle performance without improving
the masks.

Figure 6: Continued training on initial parameters, showing improvement with longer training.
Masks now have the correct shape, but artifacts of masks are outside of the lower face.

Figure 7: Continued training on the same parameters as Fig. 6, note that performance deterio-
rated as con�rmed by the FID.
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Figure 8: Results after decreasing � , which dramatically increased the plausibility of mask
pictures. However, masks were still slightly transparent.

B Previous Generation Outputs of SimGAN

Figure 9: Results of pre-training the SimGAN model to minimize only Limg . This serves as a
baseline model for further training. Pictures look color-shifted or low de�nition, but the model
now recognizably outputs a similar image to the input, verifying the base generator training
procedure.

Figure 10: Results of the �rst generation of adversarial training over 32 epochs. The loss was
overly dictated by the Limg , and there is little evidence of mask-like features being added
by the network. Initial training was worse than the results shown in Fig. 4, which is to be
expected as the initial training parameters used for the CycleGAN model were developed for
more similar problems and data.
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Figure 11: Results of the �rst productive generation of SimGAN model training. Examples
of the pre-trained model and early training are shown in Appendix B. The learning rate, � ,
and batch sizes were adjusted to make the generator model produce blue faces and mouths.
Train/Test FID scores were 370.8/270.1, worse than even the �rst generations of the CycleGAN.
However, the results are not realistic despite many unnecessary changes being made to the
images.

Figure 12: Results from early training on an 8-layer ResNet SimGan model. Train/Test FID
scores were 163.6/199.3, and results are qualitatively improved from Fig. 11. Note that the
noise at the corners expanded once the generator model became more powerful.

Figure 13: Results from training with two convoluntional layers added to the discriminator
model. Training was slower with minimal improvement in performance, evidenced by the
similar Train/Test FID scores of 217.6/139.2.
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