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Abstract

Starting with a data set of 130 anonymous intra-day market features and trade
returns, the goal of this project is to develop 1-Dimensional CNN and LSTM
prediction models for high-frequency automated algorithmic trading. Two novelties
are introduced, first, rather than trying to predict the exact value of the return for
a given trading opportunity, the problem is framed as a binary classification with
the positive class selected as the trades resulting in returns in the top ten percentile
of all returns in the training set. Furthermore, the 130 anonymous features are
augmented with a logical matrix to reflect the missing data values at each time
step, thus preserving any relevant information from the fact that a given feature
is missing from a given record. The models are compared using both machine
learning accuracy measures and investment risk and return metrics. Two CNN and
three LSTM candidate models differing in architecture and number of hidden units
are compared using rolling cross-validation. Out-of-sample test results are reported
showing high average return per trade and low overall risk.

1 Introduction

Accurate prediction of stock market returns is a challenging task due to the volatile and nonlinear
nature of those returns. Investment returns depend on many factors including political conditions,
local and global economic conditions, company specific performance and many other, which makes it
almost impossible to account for all relevant factors when making trading decisions [1], [2]. Recently,
the interest in applying Artificial Intelligence in making trading decisions has been growing rapidly
with numerous research papers published each year addressing this topic. A main reason for this
growing interest is the success of deep learning in applications ranging from speech recognition
to image classification and natural language processing. Considering the complexity of financial
time series, combining deep learning with financial market prediction is regarded as one of the most
exciting topics of research [3].

The input to our algorithm is a trade opportunity defined by 130 anonymous features representing
different market parameters along with the realized profit or loss on the trade in percentage terms.
Rather than using regression models to predict the percent return on a given trade opportunity, we
decided instead to frame the problem as a binary classification one. First a target column is added
to the training data with the trades in the top 10 percentile of all trades in terms of percent return
marked as the positive class, while the remaining trades are marked as negative (either losers or small
winners). Rather than trading every opportunity identified as a probable winning trade, the models
will mostly stay in cash and only trade the few opportunities where the return is predicted to be in
the top percentile. This approach is consistent with studies of historical returns on the S&P500 and
other market indices showing that the best 10 days in any given year are responsible for generating
on average 50% of the total market return for that year. Furthermore, the best 50 days in any given
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year are responsible for about 93% of the total return for the whole year [4] thus the idea of focusing
on identifying the most profitable trading opportunity and avoiding taking unnecessary risk by acting
on every possible trade signal. The threshold for identifying positive trades is a hyperparameter
that greatly impacts the number of trades executed during the test period (which in turns affects the
trading costs), the total return and the maximum draw-down. Due to resource and time limits, this
hyperparameter will not be changed in this study and is left constant at top 10 percentile.

2 Related work

Stock market prediction is usually considered as one of the most challenging issues among time
series predictions [5] due to the noise and high volatility associated with the data. During the past
decades, machine learning models, such as Artificial Neural Networks (ANNs) [6] and Support
Vector Machines (SVR) [7], have been widely used to predict financial time series with remarkable
accuracy. More recently, deep learning models have been applied to this problem due to their ability
to model complex nonlinear topology. An improvement over traditional machine learning models,
deep learning can successfully model complex real-world data by extracting robust features that
capture the relevant information [8] and as a result achieve better performance [9].

Many examples for the successful use of deep learning methods in developing algorithmic trading
models are available and can generally be split into two categories: Deep learning based methods
and reinforcement learning based methods. For instance, Arevalo et al. [10] introduced a high
frequency trading strategy based on a Deep NN that achieved a 66% directional prediction and 81%
successful trades over the test period. Bao et al. [11] used wavelet transforms to remove the noise
from stock price series before feeding them to a stack of autoencoders and a long short-term memory
(LSTM) NN layer to make one-day price predictions. Furthermore, M et al. [12] compared CNN to
RNN for the prediction of stock prices of companies in the IT and pharmaceutical sectors. In their
test, the Convolutional Neural Network showed better results than the Recurrent Neural Network
and Long-Short Term Memory. The difference in performance was attributed to the fact that CNN
does not rely on historical data as is the case with time sequence based models. On the other hand,
Sutskever et al. [13] argues for the use of LSTM and sequence-to-sequence models for their ability
to retain information from earlier examples in the training set while adapting to newly arriving
data. Alternatively, many researchers focused on using Reinforcement Learning techniques for
addressing the algorithmic trading problem. For instance, Moody and Saell [14] introduced a recurrent
reinforcement learning algorithm for identifying profitable investment policies without the need to
build forecasting models, and Dempster and Leemans [15] used adaptive Reinforcement Learning
to trade in foreign exchange markets. Reinforcement Learning models present two advantages over
Deep Learning predictive models. First, RL does not need a large labeled training data set, This is a
significant advantage as more and more data becomes available it becomes very time consuming to
label the data set. Furthermore, RL models use a reward function to maximize future rewards (reward
functions can be formulated according to any optimization objective of interest such as maximum
return or minimum risk), in contrast to DL regression and classification models which focus on
predicting the probability of future outcomes. We believe that a combination of both methods in a
Deep Reinforcement Learning approach presents the best of both worlds as it allows the agents to
learn deep features from the training data while avoiding the need for a labeled data set and allowing
for the customization of specific reward functions.

3 Dataset and Features

This study is based on a financial dataset extracted from the Jane Street Market Prediction competition
on Kaggle [16]. The available dataset is composed of 2,390,491 record each defined using 130
anonymous features measured sequentially spanning 500 days at different time steps during each day.
The number of transactions varies from day to day with the minimum being 29 transactions on day
294 and the maximum of 18884 transactions on day 44. The data does not specify an explicit target
but provides five columns that represent the realized percent return on each trade and the returns over
4 different time horizons. The objective is to populate an action column with one of two decisions:
to trade or not to trade. Note that the exact nature of the trade is unknown (long or short) as well
as the specific instrument or market traded, in other words, only the return values are provided for
the output. For this study, return values in the top ten percentile of all returns will be marked with



a positive trade signal while every other trade will be marked with a negative signal. Furthermore,
by analyzing the missing values from each feature, it is clear that they follow a fixed time pattern
regardless of the number of transactions on any given day which could be valuable information to the
network. As a result, we will augment the features matrix with a logical matrix of size [m,130] where
m is the number of training examples. Each element of the logical matrix at [i,j] will be set to true if
the features matrix has a missing value at the corresponding [i,j] location. Following the creation of
the logical matrix, the last 50,000 records of the available data are set aside for testing.

Due to the sequential nature of the dataset, random validation and testing sets are not appropriate
and instead we will use a rolling cross-validation approach. We start training with the first 1,000,000
transactions and validate on the next 250,000 records. Next, the first validation set is included in the
second training set resulting in a second training set of 1,250,000 records and we use the following
250,000 records for the second validation.set and so on until we reach a training set that includes the
first 2,000,000 records and is validated on the following 250,000 records. The rolling cross-validation
process is show in schematically in Figure (1) below [20].
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Prepossessing of the training and development data is performed over two steps. First, a SimpleIm-
puter from the SKLearn library [17] is used to replace the missing values with the median of each
feature over the training set. Next, a RobustScaler from the SKLearn library [18] is used to normalize
the data. This scalar removes the median and scales the data according to the inter-quantile range of
each feature. The two pre-processors are saved in separate files for use with the test subset.

4 Methods

Two types of models are tested for this project. Three LSTM and two CNN models differing in
architecture and/or number of hidden layers are considered. Using the rolling validation procedure
described previously the best model from each family is identified and used for final out-of-sample
testing.

1 - CNN Models: A convolutional neural network is a type of deep neural networks that is effective
in forecasting in time series applications. In our case we use a 1-dimensional CNN to extract features
from the input tensor. A Max Pool 1D with a pool size of 2 is applied to each CNN layer. The output
from the last convolutional layer is flattened and passed to one or more dense layers before applying a
sigmoid activation to classify the trade. During training we apply label smoothing of 0.2 to the Binary
Crossentropy loss function to effectively lower the loss target from 1 to 0.8 to lessen the penalty for
incorrect predictions, we believe this is necessary given the volatile and unpredictable nature of future
stock market predictions using the model. Two architectures are considered as shown in Figure (2) in
the appendix, the main difference is the size of the network by adding additional 1D CNN layers with
increasing filter sizes as well as adjusting the number of dense layers.

2 - LSTM Models: LSTM is a deep neural network architecture that falls under the family of
recurrent neural networks (RNN). RNNs are deep networks that have feedback loops. Traditional
RNNSs suffer from what is known as the problem of vanishing and exploding gradient in which
the network either stops learning (vanishing gradient) or never converges to the point of minimum
cost (exploding gradient). LSTM are designed to eliminate both problems and hence have become
popular in modelling complex sequential data. LSTM layers consist of cells that store historical state
information as well as gates that control the flow of information through these cells. LSTM cells
have three types of gates: forget gate, update gate, and output gate. The forget gate outputs a number
between 0 and 1, where during the learning process a "1" means "completely keep this information"
while a "0" is translated to "completely ignore this information". The update gate chooses which new
data will be stored in the cell. First, a sigmoid layer chooses which values will be changed and then a
tanh layer creates a vector of new candidate values that could be added to the state. Finally the output



gate decides what will be the output of the LSTM cell which will be a combination of the cell state
and the newly arriving data. The LSTM cell structure is shown in the figure.
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LSTM layer has hidden units varying from 64

to 128 to 256. The LSTM layer is followed by

a dropout layer with a keep probability of 75%.

Followed by a second LSTM layer with hidden units varying from 32 to 64 to 128. Followed by a
second dropout layer with a keep probability of 75%. Finally a softmax layer is used to output the
trade decision between O ( no trade) or 1 (trade).

5 Experiments/Results/Discussion

For this study the objective is to train the networks to minimize the mean squared error over the training
set. Adam optimization is used for both LSTM and CNN models. The Adam optimization algorithm
is an extension of stochastic gradient descent and has shown significant advantages in minimizing
non-convex functions. A learning rate of 0.001 was selected after some initial experimentation with
reduced training sets as well as a batch size of 32. For the LSTM, five different sequence lengths were
tested (15, 20, 25, 30, 35, 40) each representing a trade-off between using longer lags to determine
the trade decision with the risk of including too much irrelevant information in a highly dynamic
environment. Based on initial tests, it was determined that a sequence length of 10 provided the best
results over the validation set.

To compare the candidate models we will use precision, recall and F1 scores for each model as
well as the Sharpe Ratio, Total Return and Maximum Draw-down over the test period. Typically,
classification accuracy is defined as the total number of correct predictions divided by the total
number of predictions made for a dataset. However in this case, accuracy is an inappropriate measure
because the problem is highly imbalanced by design. Recall that only the top 10 percentile of all
training records are marked with "1" thus the overwhelming majority of the training set is from the
negative class meaning that even a poor model can achieve high accuracy scores by simply choosing
to not trade at all.

For the 1D CNN model, we tested the model with and without Batch Normalization and found that
it improved results particularly when training with a lower number of epochs. The Dropout layer
after each convolution was tested with a rate range between 0.1 and 0.5, we found that the additional
regularization gained from the higher dropout rate produced the best result. Both Average Pool and
Max Pool were tested, the difference in performance between the two was negligible. Decreasing the
batch size from 256 in earlier models to 32 was particularly effective.

The results for the best model after four rolling-validation runs are given in Table (1) below.

H Model Dev. Precision Dev. Recall Dev. F1 Test Precision Test Recall Test F1 H
LSTM64x32 0.40 0.01 0.02 0.33 0.02 0.04
LSTM128x64 0.37 0.02 0.03 0.36 0.02 0.04

LSTM256x128 0.36 0.03 0.06 0.39 0.04 0.07
CNN1 0.41 0.01 0.01 0.46 0.01 0.02
CNN2 0.28 0.03 0.05 0.41 0.04 0.08

Table 1: ML Metrics for Last Validation and Test runs

The precision metrics (percentage of positive identification that was actually positive) does not vary
significantly for the three LSTM models but has a significant drop from the first to the second CNN
model. Given that the positive class is defined as trades in the top 10 percentile, many of the mis-
classified positives will still be winning trades even if not among the best trades originally targeted.
This will be clear from the risk return metrics which will show that even with a low precision, the
models are still profitable. The recall (percentage of true positive actually classified as positive)



metric shows that all 5 models are only able to capture a very small percentage of the best trades
which leaves a lot of room for improvement. It is however noticeable that the biggest LSTM model as
well as the second CNN model achieve the highest precision, which indicates that the models suffer
from high bias specially that the recall over the validation and test sets are very close. The F1-score
is a combination of precision and recall and shows see that the two largest models (most trainable
parameters) achieve the highest scores indicating that future work should try even deeper models.
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Figure(3): Cumulative Return over Test Period
The cumulative return over the test period are shown in Figure (4) below. The LSTM256x128 model

generates the highest cumulative return Of 7.4%. The financial performance metrics for the LSTM
models are reported in Table (2).

H Model Total Return Max Draw-down Number of Trades  Avg. Ret. per Trade  Sharpe Ratio H
LSTM64x32 3.61% 0.63% 351 1.03% 0.022
LSTM128x64 3.34% 1.69% 309 1.08% 0.018

LSTM256x128 7.39% 0.59% 491 1.50% 0.032
CNN-1 -1.18% N/A 107 -1.1% -0.007
CNN-2 2.25% N/A 416 0.54% 0.014

Table 2: Financial Performance of LSTM and CNN Models

As expected, all three models took very few trades from the possible 50,000 opportunities available.
However, the performance in terms of average return per trade taken is excellent as well as the very
low draw-down of this strategy. The best model is the LSTM256x128 across the board with almost
double the total return as any other model and with the lowest risk. It is also noticeable how the
average return per trade is about 50% higher with the best model despite taking 100 more trades,
which reflects the improvement in both precision and recall of the model as the number of parameters
is increased. Finally, one possible explanation for the good performance of the models despite the
very low recall values is that the models are learning to identify the best trades, but when they fail,
they do not fall from them, still identifying good trading opportunities even if not the best.

6 Conclusion/Future Work

A novel approach for training deep neural network for automated training was presented. Rather than
attempt to predict the exact return at every future time step, the problem is formulated as a binary
classification one with the goal of identifying the most promising trading opportunities. Furthermore,
the feature matrix was augmented by adding a logical array to preserve the information about missing
features at each time step. Result show positive returns with very low risk as a result of only targeting



the safest trading opportunities. If more time and resources are available, deeper networks would
be tested as well as different threshold for the positive class (this study considered only one such
threshold at top 10 percentile). Combining Reinforcement Learning with the LSTM model could also
be investigated with the reward function based on the identification of major opportunities only.

7 Contributions

Mohamed Elseifi wrote the prepossessing function, the post-processing (testing and results analysis)
function, the LSTM models, the final paper and the presentation slides. Hamdy Hamoudi wrote the
CNN model code, the two sections in the final paper related to CNN.
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Figure(1): CNN Model Architectures
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Figure(2): LSTM Network Architecture
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