Improvements of SCNN on lane detection in harsh scenarios

Yiyun Gu Yizhi Zhang Ziyue Xiao
guyiyun7@stanford.edu zhangyz@stanford.edu ziyuex@stanford.edu
Abstract

Spatial CNN is capable of capturing spatial relationships of pixels across rows and
columns of images for lane detection through message passing layers. We have
explored several methods to improve SCNN performance especially in harsh sce-
narios in terms of accuracy, F1 and training time. (1)We modify the loss function
to make background pixels have lower influence during training. (2)We augment
training data by decreasing brightness, adding Gaussain blur and decreasing con-
trast to existing images. (3)We replace the encoder VGG-16 with ResNet-18 as
backbone so that ResNet18 is able to preserve useful low-level information for
much deeper layers. (4)We replace Momentum optimizer with SGD+Nesterov
momentum optimizer. The first three methods achieve higher training lane accuracy
but have lower test F1 score than the baseline model. The last method achieves
lower training lane accuracy. With ResNet-18 as backbone, the model trains 4 times
faster than the baseline model with VGG16. However, the model with ResNet18
shrinks image size and fails to process sufficient information so the F1 score is
much lower.

1 Introduction

Lane detection is vital to a fully understanding of traffic scenes in autonomous driving. In reality,
however, detecting lanes can be challenging considering many harsh scenarios, including adverse
weather, irrelevant road markers and occlusion by other vehicles. Another challenge in lane detection
comes from the long and thin shape of traffic lines, there are fewer pixels than the background pixels,
which makes training task even harder.

In our project, we intend to improve the performance of SCNN in more multiple scenarios, like night
or occlusion. The input of our model is front-view RGB images of lanes during driving, and the
output is the existence value and probmap for four lanes. If the probability of existence is higher than
0.5, we would go over the probmap and produce the the final predictions of lanes.

2 Related work

Traditional models [[6] [[10] try to predict lanes by generating lane segment information using multiple
hand-craft low-level features, like color and edge. These models are simple and can be generalized
into various situations, but the performance of such models are greatly affected by external conditions,
like lighting condition and occlusions. The cumbersome feature selection process also makes it hard
to be popularized [3].

As deep learning take off in computer vision, many deep models are applied to avoid using hand-
crafted features and learn to extract features in an end-to-end manner [3]]. These approaches usually
treat lane detection as a semantic segmentation task, classifying image pixels into different categories
and testing if a pixel belongs to a traffic line or not [1]].

The main problem with these CNN models is that they rely heavily on the segmentation maps of
traffic lines, but they can only learn from very subtle and sparse annotation. Increasing the width of
lanes may solve the problem to some extent, but it requires more work on pre-processing and may
hurt the test performance [3]]. Lee et al. [7] used vanishing points as additional supervisory signals,
thus alleviated the reliance of deep models on sparse annotations.

In our project, we follow the work of Pan et al. [8] which won the first place in CULane Dataset
Challenge. They adopted the idea of "message passing” and utilized spatial information to help
propagate information between neurons. But this model doesn’t perform very well in harsh scenarios
like night and raining days. Therefore, we want to improve the efficiency of this framework in more
challenging situations.

3 Dataset and Features

The dataset we use is CULane from Pan et al. [8], a large scale challenging dataset comprised of
urban, rural and highway scenes collected in Beijing for traffic lane detection. This dataset extracts
133235 frames from more than 55 hours of videos frames, and the images are divided into 88880
images for training set (66.7%), 9675 images for validation set (7.3%) and 34680 images for test set
(26.0%). As shown in Fig.A1 in Appendix, test set is further divided into normal and 8 challenging
categories, including crowded, night, no line, shadow, arrow, dazzle light, curve, crossroad. Each
frame has a resolution of 1640 x 590 and is distorted. Lane segmentation labels, i.e.per-pixel labels
generated from original annotations, are provided.

4 Methods

The baseline model we choose here is the Spatial CNN (SCNN) proposed together with
the CULane dataset by Pan et al. [8]. This model utilizes a VGG16 encoder as the
feature extractor and then pass the features into the customized layers, which are de-
signed to pass the spatial information in the input features more effectively. Specifically,
the customized layers perform convolutions across the dimensions of height and width of
the input tensor with 3D kernels, which could be visually represented as Fig[I] below.

n;_&u
i

Input Top hidden layer SCNN_D SCNN_U SCNN_R SCNN_L Output

Note that the
convolution is
carried out in all - CNN -
four directions
so as to gain
more complete
spatial correla-
tions between
the features.
Mathematically,
the "SCNN_D" layer which represents the convolution across the image height from top to down can
be written as follows [8]]:

X{‘k:{Xi’j’k’ j:1
bds Xi,j,k + f(zm Zn X’:n,j—Lk—i-n—l X Km,i,n)a j = 2, 3,... ,H

Final
Prediction

Figure 1: Spatial CNN Implementation!7]

Where f(-) is the activation function like ReLU, K,, ; ,, stands for the weight in the kernel from
element in the ¢th channel in the last slice to the element in the jth channel in the current slice with
the difference in the width direction being n, and X Z’ ;1 denotes an updated element at the ith channel,
jth row and kth column. The weight values are shared across different slices for one message passing
direction so an input tensor with shape (H, W, C') will correspond to a 3D kernel of size (C, C, W).

Intuitively, the SCNN algorithm adds the message passing layers in a way very similar to standard
convolutional layers, except that the convolution now happens across the height and width dimensions.
Besides, instead of passing the output of convolution to another layer, the algorithm uses the result to

produce a new layer, so that the spatial information between elements at different positions of the
image can be better propagated, thus yielding a more effective learning.

In this project, we train the baseline model using hyperparameters in the paper [3]] and github[2]. The
learning rate is 0.01 and the optimizer is Momentum optimizer with momentum equal to 0.9. The
train image height is 800 and the train image width is 288. We change the train batch size from § to 4
due to the limit of memory and computational cost. The training epoch is set at 5000 since we’ve
found there is no significant improvement after 5000 epochs. The loss function is cross entropy loss,
with a combination of existence loss (i.e. whether the model correctly predicts that a lane mark exists)
and segmentation loss. The final output of the algorithm will be probability maps that predict the
probability of different types of lane marks in the image. We refer the baseline model as Model_vgg.

We use pixel-wise accuracy for lane and background, and F1 score as metrics. For any lane, if the
model predicts its lane existence and the IoU is larger than 0.3, we consider it as a true positive.

4.1 Loss function and optimizer

The loss function is defined as: loss = Z;L:o w; f(8:,8;)+Bg(y,¥). f refers to softmax cross entropy
loss function. The binary segmentation loss is a weighted sum of cross entropy loss of lane and
background pixels. The coefficient(w) of background pixels for the segmentation loss is 0.4 and
the coefficients(wy, ws, w3, wy) of lane marks are 1. g calculates sigmoid cross entropy loss, which
represents the loss estimating existence label of each lane. The coefficient(5) of existence loss is 0.1.

Since the number of background pixels is much larger than that of lane pixels, we want to lower their
influence in the loss function. We decrease wq from 0.4 to 0.2. The model trained using the updated
background coefficient is called Model_bg0.2. In addition to the modification of loss function, we
also try to add Nesterov Momentum the into the optimizer and trained Model_nest.

4.2 Data augmentation

In this project, we intend to improve the accuracy of the model in more complex scenarios like rainy
and poor light, while the dataset only contains around 20000 images in such situations. We expanded
the dataset from 88880 to 115701 by decreasing brightness, adding Gaussian blur and deceasing
contrast to existing images. The proportion of images generated with different method is: decreased
brightness (40%), Gaussian blur (30%) and decreased contrast (20%). We refer the trained model
based on the augmented training set as Model_data_aug.

4.3 Replacing VGG16 with ResNet

Inspired by some recent

works [9], we noticed that

other than VGG16, ResNet
is another commonly used "] "
backbone structure for fea- Input image

ture extraction, and we want K. : !

to explore whether ResNet ’ ' '
has more advantage over ' o . [l conva, s, 54,128,256, 522
VGG16 when solving this :)
problem. Our hypothesis is
that ResNet should outper-
form the VGG16 network
mainly because of its short-
cut structure. We believe such structure would make it easier and more efficient for the geometric
information to be passed into deeper layers, thus giving more accurate and richer extracted informa-
tion.

4 ResNet SCNN Message » Output
blocks passing layers | Outaut |

¥ Batch normalization
ResNet block
esNet bloc . Rell

Figure 2: ResNet Backbone System Diagram

For our modified model, the system diagram is shown in Fig[2] The ResNet18 backbone is imple-
mented with 5 ResNet blocks, each containing two layers with a regular convolutional operation path
and a shortcut path. The convolution for the first block has a 7 x 7 kernel to shrink the size of the
image so that it will be easier for the model to proceed the information, and the rest four blocks uses
3 x 3 kernels. The stride is 2 for conv2d and the size of the output from the 5 blocks are in the order

of 64, 64, 128, 256, 512. The code implementation of ResNet18 uses a reference from Kim [4] with
pretrained weights on ImageNet dataset. The model is then finetuned on our CULane dataset.

5 Results and discussion

The converging trend of
training accuracy is shown Training accuracy (learning rate = 0.01, momentum = 0.9, BATCH_SIZE = 4)
in Fig.3. Model_bg0.2,
Model_data_aug and
Model_resnet show better °7
performance and similar
performance afterwards
after 500 epoch, while the o5
accuracy of Model_nest is
much lower than the base-
line model. All the three
share a lower background

coefficient (0.2 or 0.05 °
for Model_resnet) than
the baseline model (0.4),
which means background oo

Accuracy
o
2

« Model_vgg VGG, bg coefficient = 0.4, no data ion, SGD optimizer
Model_bg0.2 | VGG, bg coefficient = 0.2, no data sugmentation, SGD optimizer
« Model_data_aug: VGG, bg coefficient = 0.2, data sugmentation, SGD optimizer
+ Model_nest: VGG, bg coefficient = 0.2, no data sugmentation, SGD with Nesterov Momentum optimizer
+ Model_resnet: bg coefficient = 0.05, no data sugmentation, SGD optimizer

pixels have less influence 0 1000 W e 4000 5000
on loss function. By
adding Nesterov momen- Figure 3: Training Lane Accuracy

tum, the accuracy of model
during training is much lower even though a background coefficient of 0.2 is preserved. We run the
test set and get F1 measurement listed in Table 1.

5.1 Loss function

Decreasing the coefficient of background pixels in loss function greatly improve training accuracy
((Table A2 in appendix)), but the recall measurement (Table A3 in appendix) is slightly lower that that
of baseline model, which results in an overall similar F1 performance with Model_vgg. The training
accuracy refers to accuracy in terms of lane marks. With lower background coefficient, the model
emphasizes more on lane pixels prediction, thus increasing lane accuracy at the cost of background
accuracy. However, true positive depends on Intersection over Union (IoU), which considers the
union of predicted and actual lane pixels. Therefore, it’s insufficient to simply make the the number
overlapped pixels of predicted and actual lane pixels. Decreasing the coefficient of background pixels
is not effective.

5.2 Data augmentation

From the F1 measurement, we see that the Model_data_aug doesn’t outperform Model_vgg as
expected. It has lower accuracy and lower recall in test set. There may be several possible explanations.
First we only train the model for 5000 epochs, which is quite limited compared with the epoch number
of 90000 in the paper[3]. In addition, the augmented data may not fully represent images in harsh
scenarios. For example, blurred images in day light aren’t necessarily images at night. Instead,
augmented data might add too much noise. It’s better to know the category of each image for us to
make further data augmentaton.

5.3 ResNet network

It turns out that the ResNet18 model can achieve a good accuracy compared to other models during
the training phase, however it has very low F1 score during test. Upon our observation, one important
factor that fails the model in test could be how the input image has been shrunk in the convolutional
blocks. The intention of shrinking the size is to have fewer parameters and mitigate the redundant
information in the image, and these advantages are observed during training since the runtime of one
epoch is only about 20% of the runtime of other models (~ 0.5s v.s. ~ 2.5s). However, the result

tells that for the lane prediction problem we do have to seek a high resolution output so that the area
of the lane, which is very small compared to the background, could be properly represented. The
implementation of VGG16 in [2] doesn’t apply max-pooling for the last two convolutional blocks
before message passing layers.

Another reason could be that the ResNet structure seems very sensitive to the loss from the background
prediction therefore it cannot perform optimization over both the lane and background predictions
unless the loss function only takes a minor penalization over the background (background loss
coefficient set to 0.05 while others are 1). To address this, one possible solution could be to carefully
design a loss function that incorporates more balanced background and lane losses while paying more
attention to lane prediction. Further pre-training could also help with this.

Table 1: F1 of different models on testing set (for crossroad, only false positive count is shown)

Model vgg Mode_bg0.2 Model_data_aug Model_resnet
Normal 67.67% 64.71% 58.48% 16.67%
Crowded 44.12% 40.15% 33.71% 16.51%
Dazzle light 34.06% 32.62% 29.17% 3.30%
Shadow 35.74% 30.74% 21.50% 3.03%
No line 23.94% 25.81% 19.73% 1.79%
Arrow 47.62% 49.92% 37.39% 12.55%
Curve 42.53% 41.40% 30.42% 1.87%
Crossroad 688 389 202 78
Night 38.28% 35.48% 32.69% 2.67%

6 Conclusion

We have implemented sev-
eral methods that we ex-
pected to improve the per-
formance of SCNN but it
turns out that the base-
line model still achieves the
highest F1 score. There is
accuracy trade-off between
lane and background. By
decreasing the coefficient
of background pixels in the
loss function, the model is
more likely to predict pix-
els as lane and increase lane
accuracy. But F1 and IoU
considers both lane accu-
racy and background accu-
racy. For the data augmenta-
tion, we expect blurred im-
ages and images with lower bright and contrast to help the model learn better about harsh situations
but the augmented data might not represent harsh conditions well and instead add too much noise.
Also, the VGG16 backbone of the baseline model doesn’t apply the last two max-pooling before
message passing. This results that the ResNet18 backbone pass images with smaller size to sequential
message layers and the model might not access enough information.

Category Label Model_vgg Mode_bg0.2 Model_data_aug | Model_resnet
i Py

Due to limitation of time, we couldn’t explore the ResNet backbone thoroughly to check reasons why
it performs much worse. If we had more time, we would like to find a better pretrained ResNet18
and make ResNetl8 consistent with VGG16 in terms of dimensions. We will implement other
backbones such as ResNet50 and Inception to see whether backbones will boost the performance of
SCNN. Also, the training data are mixed among different categories. We would like to find a way to
distinguish them so that we could make better data augmentation on harsh scenarios. Moreover, since
the original paper trains for 90000 epochs, we would train the model for longer time to check further
improvement.

References

[1] Y. Hou. Agnostic lane detection. CoRR, abs/1905.03704, 2019. URL http://arxiv.org/
abs/1905.03704!

[2] Y. Hou. Scnn-tensorflow. https://github.com/cardwing/
Codes-for-Lane-Detection/tree/master/SCNN-Tensorflow, 2019.

[3] Y. Hou, Z. Ma, C. Liu, and C. C. Loy. Learning lightweight lane detection cnns by self attention
distillation. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

[4] J. Kim. resnet-18-tensorflow. https://github.com/dalgu90/resnet-18-tensorflow/
tree/49eb67c3c57258537c0dcbab5cdf2c38bblaf776, 2018.

[5] Y. Ko, Y. Lee, S. Azam, F. Munir, M. Jeon, and W. Pedrycz. Key points estimation and point
instance segmentation approach for lane detection. 2020.

[6] C. Lee and J. Moon. Robust lane detection and tracking for real-time applications. [EEE
Transactions on Intelligent Transportation Systems, 19(12):4043-4048, 2018. doi: 10.1109/
TITS.2018.2791572.

[7] S. Lee, J. Kim, J. S. Yoon, S. Shin, O. Bailo, N. Kim, T. Lee, H. S. Hong, S. Han, and L. S.
Kweon. Vpgnet: Vanishing point guided network for lane and road marking detection and
recognition. CoRR, abs/1710.06288, 2017. URL http://arxiv.org/abs/1710.06288,

[8] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang. Spatial as deep: Spatial CNN for traffic scene
understanding. CoRR, abs/1712.06080, 2017. URL http://arxiv.org/abs/1712.06080.

[9] L. Tabelini, R. Berriel, T. M. Paixao, C. Badue, A. F. De Souza, and T. Olivera-Santos. Keep
your eyes on the lane: Attention-guided lane detection. arXiv preprint arXiv:2010.12035, 2020.

[10] Yinghua He, Hong Wang, and Bo Zhang. Color-based road detection in urban traffic scenes.
IEEE Transactions on Intelligent Transportation Systems, 5(4):309-318, 2004. doi: 10.1109/
TITS.2004.838221.

http://arxiv.org/abs/1905.03704
http://arxiv.org/abs/1905.03704
https://github.com/cardwing/Codes-for-Lane-Detection/tree/master/SCNN-Tensorflow
https://github.com/cardwing/Codes-for-Lane-Detection/tree/master/SCNN-Tensorflow
https://github.com/dalgu90/resnet-18-tensorflow/tree/49eb67c3c57258537c0dcbab5cdf2c38bb1af776
https://github.com/dalgu90/resnet-18-tensorflow/tree/49eb67c3c57258537c0dcbab5cdf2c38bb1af776
http://arxiv.org/abs/1710.06288
http://arxiv.org/abs/1712.06080

7 Contributions

All three members of our team are heavily involved in each part of the project, but certain people
focus more in specific areas based on their skills. Yiyun Gu from department of Management Science
and Engineering and Yizhi Zhang from department of Mechanical Engineering is more responsible
for the application of ResNet network in SCNN, and Ziyue Xiao from Civil and Environmental
Engineering take lead on loss function improvement and data augmentation.

8 Appendix

Figure Al: Dataset image examples under different scenarios
(1) normal, (2) crowd, (3) light, (4) shadow, (5) noline, (6) arrow, (7) curve, (8) cross, (9) night

Table A2: Accuracy of different models on test set

Model_vgg Mode_bg0.2 Model_data_aug Model_resnet

Normal 56.46% 66.22% 53.19% 28.54%
Crowd 39.43% 47.75% 37.77% 14.99%

Dazzle light 32.21% 40.26% 30.57% 3.32%

Shadow 33.72% 36.77% 24.88% 8.03%

No line 26.89% 31.79% 22.22% 9.91%
Arrow 43.19% 52.56% 38.43% 17.83%
Curve 37.13% 44.66% 32.04% 7.38%
Cross N/A N/A N/A N/A
Night 34.09% 36.14% 29.78% 2.44%

Table A3: Recall of different models on test set

Model_vgg Mode_bg0.2 Model_data_aug Model_resnet

Normal 98.59% 96.63% 97.99% 91.76%
Crowd 98.28% 96.70% 97.74% 96.53%
Dazzle light 98.65% 97.23% 98.38% 98.78%
Shadow 98.94% 98.05% 98.94% 97.89%
No line 98.62% 97.43% 98.57% 96.62%
Arrow 98.51% 96.89% 98.18% 95.46%
Curve 98.94% 97.73% 98.71% 85.81%
Cross 99.19% 98.70% 99.25% 99.67%
Night 98.89% 98.04% 98.74% 99.22%

	Introduction
	Related work
	Dataset and Features
	 Methods
	Loss function and optimizer
	Data augmentation
	Replacing VGG16 with ResNet

	Results and discussion
	Loss function
	Data augmentation
	ResNet network

	Conclusion
	Contributions
	Appendix

