
TastifyNet: Leveraging adversarial examples for
generating improved recipes

Abigail Russo
Stanford University

aarusso@stanford.edu

Brynne Hurst
Stanford University

brynnemh@stanford.edu

Trey Weber
Stanford University

tpweber@stanford.edu

Abstract

In the following work, we present TastifyNet: A deep learning-based recipe improvement
algorithm. In contrast to existing work which focuses on identifying recipes or generating
entirely new ones - we sought to improve existing culinary dishes. After training a neural
network model on over 250,000 rated recipes, an adversarial example inspired alteration
algorithm recommends improvements.

1 Introduction

As deep learning algorithms become more ubiquitous, practitioners are increasingly recognizing how inter-
action with such algorithms can improve our own creativity and performance. We wondered whether an
algorithm might inspire in another domain: cooking. There are many examples in the literature of deep
learning algorithms that can be trained on food/recipe data for various tasks such as ingredient identification,
image to recipe translation (1) and recipe generation (2) (3). However, one often may wish to improve an
already existing recipe based on some metric, rather than identify recipes or translate between information
types. Here, we present TastifyNet, a recipe improvement algorithm comprising of two main components.
The first, is a regression-based neural network that maps an ingredient list to a recipe rating (based on user
reviews). The next is a recipe alteration algorithm, which seeks to improve an ingredient list by replacing
items with functionally similar, but higher rated ingredients.

2 Prior Work

There are many examples in the literature of deep learning algorithms that can be trained on food/recipe data
for various tasks. Salvador et. al (1) demonstrate the ability to learn a cross-model embedding of recipes.
Compiling a dataset of over 1 million recipes and 800k images, they create automated tools for food and
recipe applications, using a joint embedding of recipes and images for image-recipe retrieval. There is quite
an extensive list of image-based recipe generators that apply similar techniques (4) (5) (6). TastifyNet uses a
different approach: rather than identifying a recipe from its image, we seek to improve an already known list
of ingredients based on a mapping between ingredients and rating.

For data pre-processing for our learning model, Pennington et. al (7) show techniques that would allow us to
learn vector representations of ingredient lists (e.g., "1 stick butter" to "butter") using Global Vectors for Word
Representation (GLoVe). Word embeddings have proven necessary and successful for a variety of applications
and performance metrics. For a large vocabulary such as all commonly used cooking ingredients, they allow
for a more compact representation of words than alternatives such as one-hot encoding.

To our knowledge, no previous work exists that uses a deep learning model to improve recipe ingredients based
on ratings. However, similar applications exist that have proven the ability to generate recipes, although with

CS230: Deep Learning, Winter 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)

different techniques than ours (2) (3). Bień et. al used a Transformer with GPT-2 architecture that allowed
users to input a list of desired ingredients, and receive a fully generated recipe with instructions, portions,
etc. Willis et. al used word2vec embedding of ingredients and an LSTM RNN to then generate new recipes
based on what ingredients are available to the user. Both of these works address food shortage issues, where a
user has a pre-defined ingredient list from which to cook from. TastifyNet seeks to provide a more nuanced
solution to the user, to generate not just a new but also improved recipe.

3 Dataset and Features

3.1 Dataset Sourcing and Statistics

Our web-scraped AllRecipes dataset contains over 60,000 recipes and includes ingredient lists, directions,
ratings, and rating count. There is a strong tendency toward a rating of approximately 4.5 (Appendix Figure
3a) and as one would expect, recipes with a fewer number of ratings occur more frequently (Appendix Figure
3b). To account for this, we weight recipes based of the number of ratings received.

We supplemented the Allrecipes dataset with scraped data from Food.com (8), compiling over 700,000 unique
user reviews into a dataset of 230,000 recipes. Although the Food dataset has a very large number of five
star ratings it also provides significantly more lower rated recipes for a more uniform distribution (Appendix
Figure 3a).

3.2 Dataset Processing

To transform our datasets into a format ready for learning relationships between ingredients and ratings, we
first needed to parse the ingredients into structured data. For example, if one ingredient for a given recipe
is "2 cloves of garlic, finely chopped", we want to separate it into "QTY: 2, UNIT: clove, NAME: garlic,
COMMENTS: finely chopped". This can be framed as a structured prediction problem, a sub-field of NLP
that involves predicting structured objects based on probability distributions. One way to do this is with
Conditional Random Fields (CRF), a statistical modeling technique that works particularly well for pattern
recognition. As developing a CRF for this task could itself encompass an entire project, we looked to adapt
Ingredient Phrase Tagger (IPT) (9) to our needs, a CRF that was created precisely to parse ingredient phrases
into its quantity, unit, name, comment, etc.

A basic explanation of IPT is as follows. Given a set of ingredient phrases and labels:

x = {x1, x2, ..., xn}, y = {y1, y2, ..., yn}

For Example:

xi = ["2", "cloves", "of", "garlic", "finely", "chopped"]

yi = [QTY, UNIT, UNIT, NAME, COMMENT, COMMENT]

training IPT on a large, labeled data set allows it to infer:

P (x|y) = P (tag sequence | ingredient phrase)

which then allows us to extract the individual ingredient names from each recipe’s set of ingredient phrases,
based on the highest probability tag sequence.

After training IPT on a provided set of 170,000 labeled recipes (without ratings), we ran it on our Allrecipes
dataset to extract each ingredient. The Food dataset was already parsed into its individual ingredients. We
then wrote a filtering script in Python to filter and modify any ingredients that our word embedding could not
handle directly (e.g., special characters, accents, synonyms, etc). In addition, we removed whitespace and
special characters, and then replaced spaces in multi-word ingredients with underscores (e.g., "olive oil" was
replaced with "olive_oil"). Finally, we split our dataset into train/dev/test sets with a 80%:10%:10% ratio.

4 Methods

4.1 Ingredient Embeddings

To generate ingredient embeddings to use as inputs to our model, we started by assigning each unique
ingredient a numeric identifier j. We then initialized the ingredient embeddings based off of the existing

2

100-dimensional GloVe embeddings (7). For ingredients made up of only one word (e.g., "butter"), the initial
ingredient embedding was the same as the GloVe embedding for that word. For multi-word ingredients (e.g.,
"olive_oil"), we used the average of the GloVe embeddings for each individual word as the initial embedding.
We then used the Mittens library (10) to finetune the existing GloVe embeddings, using the raw, unparsed
ingredient lists. These embeddings were saved in a matrix E such that the jth column of E was the embedding
for the jth ingredient. The input to our model was then constructed as follows.

First, we identified the maximum number of ingredients in a recipe to be 43 and padded recipes with fewer
than 43 to create inputs of equal length. Then, given a training example (i.e., a list of ingredient identifiers),

x(i) = [j1, j2, · · · , j43],

we looked up the corresponding embeddings in E to compute the embedding matrix

E(i) =
[
Ej1 Ej2 · · · Ej43

]
for each training example. Finally, we flattened E(i) by concatenating the individual columns to produce a
4300× 1 dimension feature vector

e(i) = [Ej1 ;Ej2 ; · · · ;Ej43].

4.2 Rating Model

We used Keras (11) to build a three layer feed-forward neural network with a mean-squared error loss to
predict recipe ratings from ingredient lists (as can be seen in Figure 1). To prevent over-fitting, we applied a
L2 regularization penalty to our loss function. In addition, to account for the imbalance in number of ratings,
we weighted each example by the number of ratings when calculating the loss.

Figure 1: Predictor Model Diagram. The predictor model takes as input a flattened embedding vector, and
sends that through three fully-connected feed-forward layers, the last layer being the output layer.

4.3 Recipe Alteration

Next, we developed a method for altering ingredient lists to improve recipe ratings. Inspired by methods to
generate adversarial examples (12), we altered the embedding of a recipe, e(i), iteratively as:

η = ∇e(i)J(e
(i), ŷ)

e(i) := e(i) + εη

Where the cost function, J , was simply the rating model’s prediction, ŷ, on the embedding, e(i). That is to
say, we iteratively alter the recipe embedding to maximize the model’s prediction. ε was chosen to balance
computational efficiency with appropriately sized changes to the embedding. Updates continued until a
stopping condition was reached and an altered recipe, ẽ(i), was generated. A minimum stopping condition was
that the ingredient list had changed. That is, for each ingredient after each iteration, we asked whether the
altered embedding was more similar to the embedding of a different ingredient. If so, the minimum stopping
condition had been reached.

4.4 Evaluation

Given this formulation, it would be circular to evaluate performance by considering how much the rating
model’s prediction of e(i) and ẽ(i) differ. We attempted several methods for creating an evaluator model that
out-performed our rating model. Ultimately, due to time and computational constraints, we settled on using
an earlier version of a rating model with different hyperparameter settings (namely, dropout regularization,

3

a trainable embedding layer, 200 dimensional embeddings) that was trained on GloVe embeddings without
fine-tuning and data-cleaning. This was made possible because the ingredients after data-cleaning were a
subset of those used to train the earlier version. Thus, even though the two models used different datasets
and embeddings, the appropriate input could be ‘translated’ to the evaluator model using the ingredient to
embedding mappings. We can then compare the evaluator’s predicted rating for embeddings e(i) and ẽ(i) for a
reasonable heuristic of performance.

5 Experiments

5.1 Rating Model Hyperparameter Search

Early trials of our predictor model indicated that we were over-fitting to the training set (see Appendix Figure
4). In an attempt to find the optimal L2 regularization weight λ, we implemented a hyperparameter search
using the RayTune library (13). We quickly realized that we needed a lower learning-rate to λ ratio in order to
prevent over-fitting. However, setting the hyperparameters this way also increased our loss. In an attempt to
solve this new issue, we performed a search over different network configurations (e.g., number of hidden
layers, hidden layer dimension, etc.) and found little improvement. We also attempted to implement a
Gradient-Boosted Decision Tree (GBDT) network. However, we experienced issues converting our dataset
into a format compatible with Keras’s GBDT algorithm, and we were unable to implement a successful
GBDT model within the timelines of this project.

In the end, we opted to use the non-over-fitting model as input to the recipe generator because we found
that over-fitting was particularly problematic for this application. During the recipe alteration stage, mod-
els with high variance would attribute hyperbolic changes in ratings to minute changes in a recipe (e.g.,
‘onion’ → ‘onions’ resulted in a 10 point increase on a scale from 0-5). For these reasons, we opted to
choose hyperparameter settings that would prioritize low variance. Specifically, we set the learning rate to
3.719201103501549e-05 and λ to 0.0240873486936871370.

5.2 Recipe Alteration

We also experimented with several hyperparameters corresponding to recipe alteration. In particular: the
metric for measuring embedding similarity, constraints on which ingredients could alter, and the stopping
condition. First, we compared mean squared error and cosine measures of embedding similarity. We found
that rating improvements were similar (Appendix Figure 7a-7b) yet we favored the cosine similarity with
which ingredient swaps tended to be more diverse (Appendix Figure 6).

A more consequential hyperparameter we considered was the constraints on which elements of the embedding
could be altered (implemented by constraining certain elements of η to zero). First, we considered whether the
padding elements of the embedding should be remain unaltered or whether the algorithm should be allowed
to add an ingredient to the recipe. In the latter case, evaluator ratings didn’t generally improve (Appendix
Figure 7c) and added ingredients tended to be unusual (e.g., ‘saunf’, ‘rajma’, ‘manwich’, ’tarama’). Next,
we allowed at most one ingredient to change. We determined which ingredient had the largest gradient after
the first iteration and zeroed out all other elements of η for all subsequent iterations. With this constraint, the
model primarily altered the first ingredient. Intuitively, this is because all recipe lists in our dataset have the
first ingredient but not all have the twentieth so the rating model places higher weights on earlier ingredients.

Another important hyperparameter was the stopping condition, i.e., at what point was the embedding considered
sufficiently altered. A minimum stopping condition in all cases was that the ingredient list had changed. On
it’s own, this formulation has a naturally regularizing effect: the altered list remained close to the original list
because alterations stop as soon as the list had changed. We wondered whether allowing further alterations
might continue to improve the recipe. To this end, we continued iteration until the rating had increased over
the original rating by some margin. Interestingly, when this margin was set too large (i.e., the algorithm was
asked to improve the recipe by > 2 points), sweets (e.g., ‘fruit’, ‘sherbet’, ‘chocolate’) and liquors were often
substituted regardless of the original ingredient list (Appendix Figure 7).

6 Results and Analysis

Overall, we found that altered ratings were consistently larger than original ratings, albeit modestly so (on
the order of 0.05 point increase, Figure 2c). While our model certainly has room for improvement, a modest

4

increase may be expected as the quality of the recipe is influenced by many factors aside from ingredient
choice (e.g., cooking directions, difficulty etc).

Importantly, as can be seen in Figure 2a-2b, the alteration algorithm doesn’t simply choose the embedding
nearest the original ingredient. Additionally, we found that recipe alterations were diverse (Appendix Figure
8). That is, it wasn’t the case that soy sauce was always swapped for Worcestershire sauce but rather it was
swapped for different kinds of sauces in different recipes. We found that alterations were most successful for
ingredient classes that had many viable alternatives (sauces, oils, juices, cheeses) and for recipes that started
with a low rating.

(a) Example recipe
alteration

(b) Ingredient embeddings nearest altered
ingredient

(c) Difference in evaluator
rating before and after alteration

Figure 2: Example recipe alteration and performance across test dataset

Inappropriate alterations occurred most often for ingredients that were fundamental to the recipe (e.g., ‘eggs’,
‘flour’, ‘baking powder’). We found that in such cases, the embedding for the original ingredient was notably
isolated causing alterations to require a large shift in embedding space and thus, an inappropriate swap. In
such cases, the ingredient swap often involved the addition of alcohol (commonly: ‘baking soda’→ ‘mint
chocolate liqueur’). A smaller portion of inappropriate alterations were due to phonetic similarity (e.g., ‘Italian
breadcrumbs’→ ‘Italian brandy’, ‘all purpose flour’→ ‘all fruit jam’). These issues were largely alleviated
by an extensive data cleaning and embedding fine-tuning effort.

7 Future Work

We would like to improve both the predictor model used for input and the predictor model used for evaluation
of the recipe generator. We were unable to develop a predictor model that did not overfit and had an acceptable
validation loss. The first step would be to overcome the issues experienced with the GBDT model to determine
if using GBDT would give us a better performing predictor model. Model performance might also be improved
by obtaining more low rated recipes or additional embedding fine-tuning (e.g., with grocery data or nutritional
information).

We also wondered if data augmentation strategies might aid performance. As described above, models that
overfit had a tendency to report large rating improvements from minute recipe alterations. This is reminiscent
of the original observations of adversarial examples (12) so perhaps a similar counter-strategy could be applied.
Data could be augmented by adding small amounts of noise to the input embeddings. Noise additions would
have to be sufficiently small so that the augmented embedding is still closest to the original embedding (i.e.,
the ‘semantic meaning’ of the augmented embedding is retained). Data augmentation might also help with
another problem. As described above, our model associates larger weights to ingredients that occur earlier in
the recipe causing alterations to be sensitive to list order. Data could be augmented by shuffling the order of
ingredients.

Finally, we would like to improve the sensitivity to recipe context (i.e., the other ingredients in the list). For
example, we found that ’flour’ might be replaced with ’chocolate cake mix’ in a chicken recipe. This can also
be observed in Appendix Figure 7: each ingredient is improved independently. Incorporating meta-information,
such as recipe category, either as an input or another required prediction might help in this respect.

5

8 Contributions

• Abigail Russo: Allrecipe dataset scraping; recipe alteration algorithm and corresponding hyperpa-
rameter search.

• Brynne Hurst: Fine-tuned the ingredient embeddings, implemented the rating predictor model, and
ran hyperparameter search over the predictor model.

• Trey Weber: Ingredient list processing, parsing, and cleanup; background research.

References
[1] A. Salvador, N. Hynes, Y. Aytar, J. Marin, F. Ofli, I. Weber, and A. Torralba, “Learning cross-modal

embeddings for cooking recipes and food images.”

[2] A. Willis, E. Lin, and B. Zhang, “Forage: Optimizing food use with machine learning generated recipes,”
CS 229.

[3] M. Bień, M. Gilski, M. Maciejewska, and W. Taisner, “Cooking recipes generator utilizing a deep
learning-based language model,” 2020.

[4] K. Zhu, H. Sha, and C. Meng, “Chefnet: Image captioning and recipe matching on food image dataset
with deep learning.”

[5] S. B. Pune, R. Mahal, V. H, S. Singhal, and M. G. Kousar, “Image-to-recipe translation using multi-model
architecture.”

[6] M. Kumari and T. Singh, “Food image to cooking instructions conversion through compressed embed-
dings using deep learning,” 2019.

[7] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,”
in Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–1543. [Online].
Available: http://www.aclweb.org/anthology/D14-1162

[8] S. Li, “Food.com recipes and interactions,” 2020. [Online]. Available: https://www.kaggle.com/
shuyangli94/food-com-recipes-and-user-interactions?select=RAW_interactions.csv

[9] M. Lynch, “Ingredient phrase tagger,” 2018. [Online]. Available: https://github.com/mtlynch/
ingredient-phrase-tagger

[10] N. Dingwall and C. Potts, “Mittens: An extension of glove for learning domain-specialized representa-
tions,” in NAACL-HLT, 2018.

[11] F. Chollet et al., “Keras,” https://keras.io, 2015.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv,
vol. 1412.6572, 2014.

[13] “Tune: Scalable hyperparameter tuning,” 2021,
Documentation available at https://docs.ray.io/en/master/tune/index.html. [Online]. Available: https:
//docs.ray.io/en/master/tune/index.html

6

http://www.aclweb.org/anthology/D14-1162
https://www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions?select=RAW_interactions.csv
https://www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions?select=RAW_interactions.csv
https://github.com/mtlynch/ingredient-phrase-tagger
https://github.com/mtlynch/ingredient-phrase-tagger
https://keras.io
https://docs.ray.io/en/master/tune/index.html
https://docs.ray.io/en/master/tune/index.html

Appendix

(a) Histogram of recipe ratings in All-
recipes and Food datasets

(b) Histogram of number of ratings
per recipe in Allrecipes dataset

(c) Histogram of number of ratings
per recipe in Food dataset

Figure 3: Distribution of Allrecipes dataset vs Food dataset

(a) lr = 0.001 and λ = 0.01 (b) lr = 2.66e-04 and λ = 2.8e-07 (c) lr = 1.369e-05 and λ = 0.00232

Figure 4: Predictor model training and validation loss using different values for learning-rate and λ.

(a) MSE similarity (b) Cosine similarity (c) Option to add 1 ingredient

Figure 5: Hyperparameter testing for recipe alteration

(a) MSE similarity (b) Cosine similarity

Figure 6: Cosine similarity tended to produce more diverse ingredient swaps.

7

(a) Margin: 0.2 pts (b) Margin: 1 pt (c) Margin 2 pt

Figure 7: Testing different stopping conditions. When iteration stop depends on the altered rating increasing,
swaps can be inappropriate.

Figure 8: Histograms of altered ingredients conditioned on original ingredients.

8

	Introduction
	Prior Work
	Dataset and Features
	Dataset Sourcing and Statistics
	Dataset Processing

	Methods
	Ingredient Embeddings
	Rating Model
	Recipe Alteration
	Evaluation

	Experiments
	Rating Model Hyperparameter Search
	Recipe Alteration

	Results and Analysis
	Future Work
	Contributions

