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Abstract

Fast diagnosis of COVID-19 is important in stopping the spread of the epidemic.
Using machine learning techniques, we may be able to recognize COVID-19 status
through cough recordings. Virufy is a team led by Stanford students in collecting
data and building network models to achieve COVID-19 cough recognition. In
this report we made several improvement to the original model of Virufy by
processing mel-spectrogram with DenseNet, as well as other adjustments. Further,
we augment the dataset by splitting individual coughs. The model improvement
and data augmentation lead to better performance.

1 Introduction

There have been over 120 million people infected by COVID-19. Fast diagnosis will be extremely
helpful for stopping the spread of pandemic areas. Cough is a common symptom of COVID-19.
Machine learning turns out to be a good approach for diagnosing COVID-19 using cough audios.
Previous studies [[1} 2} 3| 14} 5] have shown it promising to automatically diagnose COVID-19 through
cough and other audio data.

Spectrogram is commonly used for audio processing. For human sound, another quantity, mel-
frequency cepstrum (MFC), is widely used as features for speech recognition. The information
in MFC is contained in mel-frequency cepstrum coefficients (MFCCs). There have been standard
algorithms for computing MFCCs of an audio script in audio processing libraries.

2 Related work

The recent works widely uses the MFCC features and convolutional neural networks (CNNs) in the
machine learning model. Laguarta et. al [3]] used ResNet50 to process the MFCC inputs. Bagad et.
al [4] used spectrogram as input data and ResNet 18 as key structures in their model. Brown et. al
[1] apply VGGish model [6], a CNN for audio classification, and used the output feature of VGGish
together with the features in MFCC for their model.

3 Dataset and Features

3.1 Public datasets

Detection of COVID-19 through cough and other audio signals have been an active area of study.
There have been several public datasets available now:

CS230: Deep Learning, Winter 2021, Stanford University, CA. (LateX template borrowed from NIPS 2017.)



* Cosvara by Indian Institute of Science (IISc) Bangalore uses respiratory, cough and speech
sounds for diagnostics. [7] Datasets are available at https://github.com/iiscleap/Coswara-
Data

* COUGHVID dataset provided by researchers at EPFL contains over 2000 expert-labeled
audio scripts. [8]

* Virufy[9] is a Stanford led project on COVID cough detection. The datasets are available at
https://github.com/virufy/virufy_data

In our project, we mainly used the Coswara and Coughvid data, because they have the highest data
volume among publicly available datasets. After cleaning up the data and removing invalid items, we
reached a total number of 2871 cough clips, among which 528 are positive. The dataset is still very
limited in terms of size and is also very imbalanced between positive and negative classes. These
characteristics of the dataset would have significant impacts when we train our model. Considering
the small dataset, we split the data into 70-15-15 for the train, valid, and test sets, and we will use the
area under the ROC curve for metrics, which is a common practice for imbalanced data.

3.2 Data augmentation

The problem of small and imbalanced dataset is the biggest challenge. Only making use of these
original data didn’t bring significant improvements comparing to the original model proposed by
Virufy. We further incorporate heavy cough data (the audio files named cough-heavy.wav in
Coswara data) in dataset2 in addition to shallow cough.

Further, we found that many audio scripts contain several repeated coughs while others contain only
one cough. So we split the audio by silence, separate each individual coughs as independent data
points. The dataset obtained in this way (dataset3) is around 5 times larger than the original dataset.

H description positive coughs  total coughs H
datasetl ~ COUGHVID and Coswara (only shallow coughs) 528 2871
dataset2 adding heavy coughs as independent data in dataetl 622 4348
dataset3 Splitting repeated coughs in dataset2 2520 17084

3.3 Splitting individual coughs

We used a simple criterion to separate individual coughs: Split by silence. Set a threshold of 0.8 times
the maximum amplitude of the whole recording. Then for each non-silent sections, if the maximum
amplitude is larger than the threshold, we cut it into clips of 0.3s length. This is shown in Fig. |1|for
some recordings in dataset2.

Because of the limited number of sample in the dataset, it is relatively difficult to reach an good
performing end to end neural network for COVID cough detection. In the future, it is worth
considering use another neural network to do the recording preprocess here completed by simple
algorithm. After the cough recordings being well processed into standard clips, the neural network
might do better in terms of giving more accurate result.

4 Methods

The Virufy team uses the mel-frequency spectrogram and reshape it to a 64 x 64 image as the input
of CNN. Parallel to that, the first 39 MFCC coefficients, after a time average, is the input to a second
network with two fully connected layers. Also, the Coswara and COUGHVID datasets contain
several labels. The Fever/myalgia and medical history of respiratory disease are used as inputs to the
third net. The three models merged and after two fully connected layers leads to the output.

In order to make use of the additional metadata of cough clips, we decided to base our network
on Virufy’s model consist of 3 separate networks. By running Virufy’s model on our dataset, we
get a baseline performance as shown in FIG[3] Our goal is to improve AUC by adjusting network
architectures and hyperparameters. The AUC is often regarded as an intrinsic metric of the model,
while the accuracy depends on the decision thresholds of the final binary classification and can
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Figure 1: Processing the waveform of cough recordings to separate individual coughs, for recordings
No. 16 (top left), 199 (top right), 1049 (bottom left) and 2546 (bottom right) in dataset2. Red vertical
lines indicate the starting time of an identified cough and green lines indicate the end. Corresponding
spectrograms are shown below each waveform.
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Figure 2: Model structure using DenseNet
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Figure 3: ROC curves for Virufy original model (left) and improved model using DenseNet (right)
trained on datasetl.

be misleading when the data is highly imbalanced. When training the neural network, we use the
cross-entropy loss function which is a common choice for binary classification problems. We also
tried the class-weighed cross-entropy loss function to address our problem of imbalanced training
data.

As for the network architecture, we chose DenseNet among other pre-trained networks such as VGG,
ResNet, etc. In DenseNet, each layer obtains additional inputs from all preceding layers and passes on
its output to all subsequent layers. This means DenseNet is able to utilize features of all complexity
levels, while traditional CNN only makes decisions based on the most complex features. DenseNet
tends to give more smooth decision boundaries and generally performs well when training data is
relatively insufficient.[[10]

S Experiments and results

5.1 Architectures

The inputs to the model include three parts: time averaged MFCC, Mel-frequency spectrogram and
two extra labels: Fever/myalgia and medical history of respiratory disease. The model have three
networks, the first pass the time averaged MFCC through two fully connected layers with dropouts,
the second pass the spectrogram through DenseNet (instead of ordinary CNN as [9]), the third pass
two extra features through two fully connected layers with dropouts.

5.2 Experiments
Based on the model of Virufy team [9], we came up with several methods:

* Variantl: Use early stopping in the original model.

e Variant2: Add a fourth parallel network to process MFCC, with three convolutional layers,
each followed by an average pooling layer.

 Variant3: Replace the shallow CNN by a bigger one.
 Variant4: Replace the shallow CNN by DenseNet 121 with usual cross-entropy loss function.

 Variant5: Replace the shallow CNN by DenseNet121 with class weighted loss function to
address the class imbalance problem of our dataset.

We then run the variant models and monitor their ROC curves. By comparing the original model and
variant 1, we get a improvement of AUC from 0.70 to 0.746 just by reduce training epoch from 20
to 12. This means the overfitting problem is quite serious, which may be the consequence of small
training set. By using more complex network architectures, the model has a little improvement in
AUC (0.745, 0.742, 0.766 for variant 2,3,4 respectively), which implies getting to subtle features may
helps but the improvement is not satisfying. By changing from usual cross-entropy loss function to
class-weighted loss function, we see a improvement from 0.766 in variant 4 to 0.782 in variant 5. This
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Figure 4: Same as Fig. [3]but trained on dataset2.
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Figure 5: Same as Fig. [3|but trained on dataset3.

modification is effective to deal with the data imbalanced problem in our dataset. We also tried to
include new features of MFCC as input to the model. Inspired by [[L], we use 10 additional statistical
quantity as the input to the first network, instead of just the time average of MFCC coefficients. But
no major improvement is achieved.

Variant5 is our best improved model, whose structure is shown in Fig. [2] We present the comparison
of ROC curves between that and the original Virufy model in Fig. 3]

We then focus on data augmentation. First we tried to make use of all data available. In Coswara
data, each case is associated with two cough recordings, a shallow one and a heavy one, along with
other audios like speaking and breathing. In the previous Virufy model [9]], only the shallow one is
used. Now we also include the heavy one as dataset2. By training the same model as Variant5 on this
dataset, the AUC is improved to 0.83. The ROC curve is shown in Fig. i The original Virufy model
trained on the same dataset is also shown for comparison. Finally by further augmenting the data and
train the model on dataset3 (Variant8), we got an AUC of 0.88 (right panel of Fig. [5). This is our
current best result. Notably, training Virufy original model on dataset3 also gives much better result,
with an AUC of 0.87.

6 Discussion and Future Work

To summarize, we have made some improvement to the virufy model using DenseNet and data
augmentation. The amount of data is still limiting the performance. Currently the number of
“authentic” recordings in our data sets is less than 5000 with highly unbalanced distribution (only 622
positive cases) and some of them are coughs of same persons, while the data MIT team [6] collected
has 2660 positive cases and an AUC of 0.97 is achieved. In the future we’ll try looking for more data
and better data augmentation techniques, as well as further improving the model.



7 Contributions

As a team, both of us contributed equally to the planning, experimenting, coding, and every other
aspects of the project. Specifically, we are grateful to the open source effort on COVID-19 cough
detection. Their excellent work provide us with accessible dataset and valuable experiences.
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