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Abstract

Metagenome binning is a critical component of metagenomics where sequencing
data consisting of short fragments sampled from entire ecosystems are grouped
according to their shared source genome. In this project, I perform such binning
by encoding such sequencing data in a lower-dimensional space and demonstrate
improvement of this process using disentanglement across a variety of experiments
representing homogeneous and heterogeneous experimental metagenome samples.

1 Introduction

Metagenomics is the study of multi-organism ecosystems through genomic analysis. A very common
technique in metagenomics is known as "metagenome shotgun sequencing" wherein a complex sample
such as soil or human stool undergoes whole DNA extraction and sequencing. Unfortunately,this
process requires that DNA be physically sheared into very small pieces in order to be compatible with
sequencing machinery, resulting in a data set consisting of millions of 150-250 base pair sequences
sampled from hundreds or even thousands of separate original genomes. Thus, shotgun sequencing
faces many serious challenges in terms of reconstructing "short-read" data generated by sequencing
machinery back into a collection of original source genomes. Key to this process is a step known as
"binning" wherein these very short sequences, after being grouped into longer genomic segments
of tens to hundreds of thousands of base pairs, are clustered according to a shared source genome.
Without binning, it is not possible to precisely identify the organisms captured by a metagenomics
sample and it is not possible to observe meaningful features that take place overlarge genomic regions
such as rearrangements or gene transfer. In this project, I focus on using and improving upon the
use of variational autoencoders to perform metagenome binning. This has a few advantages in that
binning can be more accurate, in certain settings, and more computationally efficient as binning
occurs in a lower dimensional encoding space.

2 Data Inputs and Outputs

The input to this model consists of raw sequencing data files which undergo pre-processing steps
to include assembly into larger genomic regions called "contigs". These contigs are featurized
through quantitation of tetranucleotide frequency to generate 103-dimensional vectors wherein each
dimension represents the frequency of a given 4-nucleotide window.

The final outputs of this model are a collection of genomic bins which consist of groups of contigs
whose encoding vectors were near to each other in encoding space. This bin-level grouping allows
for all source DNA contigs that the model assigns as belonging to the same source genome to be
gathered and compared against known or input source genomes to determine precision and recall.
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3 Related Work

The problem of metagenome binning has been—and remains—a long-standing and open challenge of
the field. Many tools have been developed to address this challenge. Prominent example such as
MaxBin and CONCOCT rely upon assessing the shared frequency of nucleotide substrings between
genome contigs, the abundance of sequencing coverage between contigs and the presence of marker
genes while others such as DASTool intake bins produce by another upstream tool such as MaxBin
and re-shuffle contigs between bins. A more comprehensive comparison of such binning algorithms
is provided in Appendix 8.2 as published recently in Yue et al. [7]. Most recently, VAMB [2] has
emerged as a tool for binning that utilizes an autoencoder to compress genome contigs and then
performs clustering in the latent space. This has the advantage of being computationally much
more efficient than other tools as the latent space is much smaller than the input space. However,
performance of this approach is likely to vary with the complexity and diversity of the input genome
sample. This has not been addressed in the setting of VAMB which is currently the only tool for
binning that utilizes such an encoding strategy. Moreover, the recently published work behind VAMB
does not explore strategies for hyperparameter optimization in the setting if sample complexity nor
does it explore the use of disentanglement as a potential strategy to cope more homogeneous samples.

4 Model Workflow and Strategy

4.1 Data Processing Pipeline

As with many genomic applications, there are several pre-processing steps required for model
deployment starting from raw genome sequencing data and resulting in binning assignments of those
sequencing data to a presumed common source genome. The workflow and its constituent steps are
outlined in the Figure below:
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Figure 1: Schematic depicting data pre-processing, model encoding, post-processing, and scoring.
Numbers map to work items enumerated below

1. Acquisition of input genomic data representing metaenome samples with known input
genomes.

2. Implementation of genome featurization steps using read mapping, contig creation, and
tetranucleotide frequency calculation.

3. Implementation of a baseline encoder without disentanglement. This uses the source code
from VAMB and Nissen et al. [2] which has been imported into this project

4. Implementation of a modified encoder model containing a beta parameter.

5. Implementation of final output scoring of genome bin assignments.

As an important note, the role of the autoencoder is to convert features in genome space into encoded
feature vectors in latent space. Once these vectors have been produced, there is still one encoded



vector for each input contig and clustering of these features into genomic bins is performed using an
iterative medoid clustering algorithm as described by Nissel et al. and implemented here using the
VAMB tool set from the same authors.

4.2 Model Scoring

The overall workflow consists of two general optimization goals. The first such goal, referred to
below as the "Autoencoder Scoring Method" is for the autoencoder itself and seeks to optimize for
reconstruction loss between vectors of tetranucleotide frequencies when encoded through a narrow
bottleneck. For this work, hyperparameter tuning considered both 32-dimensional and 64-dimensional
latent spaces, the results of such tuning are described in Section 4: Hyperparameter Tuning.

Importantly, each resulting encoding vector still represents an input contig and so, when binning
is performed via clustering encoding vectors in encoding space, those vectors which are assigned
the same source genome are then mapped back to their input contigs. These contigs and their
bin assignments are evaluated using lineage and taxonomy-specific marker genes via the CheckM
tool which calculates the completeness and contamination (akin to recall and precision) of these
assignments. This is referred to below as the "Binning Scoring Method" as this does represent the
ultimate functional goal of using an encoder to perform binning in practice.

With regard to modeling in particular, the focus of my work is at the point of the autoencoder model
wherein I seek to improve upon a base implementation of a VAE for contig encoding through the use of
disentanglement. Implementing a VAE with a beta parameter and modifying that as a hyperparameter
is the core focus of this work with the assumption that disentanglement will improve binning by
creating more orthogonal encoding dimensions and, hence, improving separability between contigs
especially in situations where the originating sample consists of similar source genomes.

4.2.1 Autoencoder Scoring Method

The autoencoder model calculates several basic scoring parameters before combining them into a final
output loss. Initially, the model calculates the sum of the squared error reconstruction losses between
both tetranucleotide frequency values (tnfs) and read abundance (depths), as shown in equations (1)
and (2) below:
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Where N is the number of input contigs, t is the number of dimensions in tetranucleotide space (here
t=103), T is a vector representing the abundances of a specific tetranucleotide across all contigs, and
D is a vector representing the abundance of each contig in the sample as calculated by Reads per
Kilobase Mapped (RPKM).

Following this, the KL Divergence, D, is calculated in the method described and implemented by
Higgins et al. [4]:
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Where Dimygien: is the dimensionality of the latent space, tuned to 32 for the results shown in

Section 5.

The final loss is then the weighted sum of losses for depths, tnfs, and KL divergence with 5 acting as
a coefficient for D,
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Importantly, as the 3 parameter is increased, this increases the impact of Dgr, on LosS final



4.2.2 Binning Scoring Method

As a note on how the final scores of completeness and contamination are calculated in this case, we
are using the approach described in the CheckM manuscript [6]. Contamination is estimated from the
number of multi copy marker genes identified in each marker set
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where s is a set of collocated marker genes; M is the set of all collocated marker sets s; Cyis N — 1
for a gene g identified N >= 1 times, and O for a missing gene.

5 Hyperparameter Tuning

Hyperparameters for this model were evaluated using Bayesian optimization across a range of values
for learning rate, dropout, alpha, beta (as a cost parameter for the encoder network), and latent space
dimensionality with results presented in Figure 2 . In summary, this optimization was carried out
using a development data set representing airway metagenomes from the CAMISIM project and
demonstrated a reduction in loss with increasing beta with the best-performing models having a
beta of 800. Dropout, latent space dimensionality, and learning rate were similar in importance
and comparatively less important than beta but optimal settings for these were 0.2, 32, and 0.001
respectively based upon the best performing models. Since training requires iteration over tens of
thousands of contigs and requires up to 3 hours of GPU time, these executions were performed in
a long-running job with hyperparameter values and model performance being captured using the
weights and biases wandb package (wandb.com) for model telemetry.

Importantly, loss for this model is calculated using the Autoencoder Scoring Method described above
which captures the encoding and reconstruction performance of the model as it processes contigs.
Hyperparameter tuning was not performed with the Binning Scoring Method because this would not
reflect how this model would be used in practice. When performing metagenome binning, a given
sample’s contigs would be generated and encoded but the source genomes would not be known and,
hence, could not be used to calculate contamination. For this work, hyperparameter tuning was used
to identify optimal hyperparameters and to establish the relevance of the beta parameter in particular.
In the Final Results section, these optimal parameters are used along with a range of beta values to
bin a variety of metagenome samples of varying complexity.
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Figure 2: A Summary of 56 training runs assessing encoder reconstruction loss for varying values of
alpha, beta, dropout, learning rate, and latent dimensions. Paths connect hyperparameters chosen
for a single run. Path colors reflect the average loss for a given combination of hyperparameters.
B Summary of purity-based hyperparameter importance calculated using a random forest classifier
trained to predict loss.

6 Results

With hyperparameters tuned, the beta variational autoencoder was tested using /3 values of 1 (cor-
responding to the model as published by Nissel et al.), 5, 50, 200, 400, and 800 each using using
150 training epochs in the encoder model. Moreover, these experiments were carried out across



a collection of simulated metagenomes representing varying levels of phylogenetic similarity and
complexity. These included combinations of 25 and 250 input genomes representing 1, or 10 separate
genera. This was done to test the impact of the 3 hyperparameter in resolving genome bins when
samples consist of more similar versus more divergent source genomes.

These experiments reveal that increasing beta results in fewer contig bins and a lower contamination
rate (i.e. a higher precision). Full results for each experiment are recorded in Appendix item 8.1 and
losses during training for these experiments are provided in Appendix 8.3). The association between
beta and contamination is depicted in Figure 3.
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Figure 3: Relationship between [ and the contamination of metagenome bins for simulated
metagenomes derived from 25 and 250 source genomes samples from 1 or 10 source genera. Increas-
ing values of beta reduce contamination

7 Discussion

As mentioned previously, metagenome binning is essentially a problem of re-grouping fragmentary
samples of input data (in this case, source genomes) according to a shared sample source (in this
case a single originating genome). Due to the nature of sequencing, this problem must be solved
by identifying some signature shared between fragments sampled from the same source but not
shared between fragments sampled from different sources. Moreover, previous attempts to solve this
have invoked computationally intensive algorithms based upon pairwise comparison or marker gene
detection. Embedding offers a speed up to accomplish this in a simpler, lower-dimensional space but
at the cost of information content. Here, I extend initial work in using variational autoencoders for
creating a lower-dimensional encoding space in which to perform binning by adding disentanglement
as described in the 3-VAE.

This modification enforces that the narrow bottleneck’s encoding dimensions are less inter-related.
Under the hypothesis that this will be useful in allowing the encoder to capture more granular
distinctions between encoded contigs especially when source genomes are more related to each other,
this work tested the impact of increasing the 5 parameter across a variety of metagenome samples
ranging from fewer, less related source genomes to more abundant, more related source genomes. We
would expect that making such granular distinctions between contigs would be especially important
when binning a metagenome representing many related organisms. In the Results above, we note that
increasing values of 3 proportionally reduce the contamination of recovered contigs while preserving
the number of recovered contigs especially with high values such as 400 and 800 when binning a
sample derived from 250 source genomes all samples from the same genus. Similarly, increasing 3 is
also useful in metagenome samples with fewer source genomes (e.g. 25 genomes samples from the
same genus) but this contamination effect plateaus at a value of 200 rather than 400 or 800 which
would be expected since the metagenome sample—while still derived from related genomes—represents
fewer source genomes and, therefore, should be easier to separate in encoding space than a more
crowded sample with 250 genomes. Finally, this effect is far less pronounce with metagenomes
sampled from more diverse genomes (e.g. 10 source genera rather than one source genus) which
we would naturally expect to be easier to resolve in encoding space with less reliance on enforcing
disentanglement.



8 Appendix

8.1 Simulated Genome Experiments and J Values

H Beta Num. Genera Num. Source Genomes

Num. Bins  Avg Contamination H

1 1
1 1
1 10
1 10

200 1
200 1
200
200
400 1
400 1
400
400
800 1
800 1
800
800

10
10

10
10

10
10

25
250
25
250
25
250
25
250
25
250
25
250
25
250
25
250

229
154
317
67
212
154
317
51
200
139
282
45
197
137
264
37

245
1.15
0.31
0.33
1.55
1.15
0.13
0.31
1.32
0.94
0.14
0.32
1.41
0.71
0.16
0.34

Table 1: Training Results using a latent space of 32 dimensions, learning rate = 0.001, epochs = 150,
dropout = 0.2 with different values for beta

8.2 Comparison Table of Metagenome Binning Tools

Genome Parameters Model Version  Publication Last Resources
binner to update
wvalidate
MaxBin k-mer frequencies, coverage, Expectation-maximization, bin number estimated 226 2014 2019 https:/fsourceforge.net/projects/maxbin
single-copy genes fram single-copy marker gene analysis
MetaBat 4-mer frequencies, coverage Modified K-medoids algorithm 18213 2015 2020 https://bitbucket.org/berkeleylab/metabat/src/master
Groopm coverage, contig's length, Two way clustering, Heugh partitioning, self- 2 2014 2017 hittps://github.com/timbalam/Greopht
tetranuclectide frequency organizing map
CONCOCT k-mer frequencies, coverage Gaussian mixture models, bin number determined by | 1.0.0 2014 2019 https://github.com/BinPro/CONCOCT
variable Bayesian
MyCC k-mer frequencies, coverage Affinity propagation 1 2016 2017 https://sourceforge.net/projects/sb2nhri
(optional), universal single-copy
genes
MetaWatt tetranucleotide frequency, Firstly clustering by empirical relationship of the 353 2012 2016 https://sourceforge.net/projects/metawatt
coverage average standard deviation at tetranucleotide
frequency mean, then employing interpolated
Markov models
BMC3C frequency variation of Ensemble k-means, construct a weigh graph and \ 2018 2018 http//mlda.swu.edu.cn/codes php?name = BMC3C
oligonucleatides, coverage, partition it by Normalized cuts [49, 501
codon usage
Binsanity coverage, tetranuclectide Affinity propagation 028 2017 2020 hitps://github. igraham/BinSanity
frequency, percent GC content
Autometa seqguence homelogy, single- Lowest common ancestor analysis, DBSCAN \ 2019 2020 https://bitbucket.orgfjason ¢ kwan/autometa/src/master
copy genes, 5-mer frequency, algarithm, supenvised decision tree dlassifier recruite
coverage, single-copy genes unclustered contigs
COCACOLA k-mer frequency, coverage, co- | K-means based on L1 distance, non-negative matrix =~ 2017 2017 https://github.com/younglululu/COCACOLA
alignment, paired-end read factorization with sparse regularization, hierarchical
linkage clustering
SolidBin-naive | single-copy mark genes, Semi-supervised spectral Normalized cut 11 2019 2020 https://github.com/sufforest/SolidBin
tetranucleotide frequencies,
coverage, pairwise constraints
Vamb tetranuclectide frequencies, Variational autoencoders, iterative medoid clustering  2.0.1 2018 2020 hittps://github.com/Rasmussenl ab/vamb
coverage algarithm
DAS Tool original binner output bin sets Refine bins according shared contigs between two 111 2018 2019 https:/fgithub.com/cmks/DAS Tool
original binner results
MetaWrap original binner output bin sets | Separating every pair of contigs in different bins, 122 2018 2019 https://github.com/bxlab/metaWRAP
selecting the best bin sets according completion and
contamination
Binning_refiner | ariginal binner output bin sets, | Scoring bins based on single-copy genes and picking | 1.4.0 2017 2019 hittps://github.com/songweizhi/Binning_refiner
single-copy genes up high-scare bins iteratively

Figure 4: Comparison of metagenome binning tools excerpted from Yue et al. [7]



8.3 Model Training Loss for S experiments
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Figure 5: Model loss per training epoch for models trained in the assessment of 3 and its impact on
various simulated metagenomes.
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