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Abstract

The clinical writing of unstructured reports from chest radiograph imaging is error
prone, due to the lack of its standardization and repeated report writing daily,
which can prove fatal. A system that generates reports can assist clinicians to
reduce errors. Such a system could further be used as a training tool for medical
education as well as used in the global setting to promote medical accessibility in
low resource areas. Current medical report generating efforts employ the BLEU
metric which was shown to score better clinically meaningless, yet grammatical,
random reports [1–2]. Further, state of the art methods for this task pretrain
the visual extractor on Imagenet which has been shown to generalize poorly for
medical domain applications [3]. We seek to study the benefit of pretraining on a
chest radiograph specific trained visual extractor. We also combine both feature
extractors to study how this extra input information to the generating model can
improve the semantic medical accuracy of the resulting reports. We test each model
by evaluating BLEU(1–4) metrics and F1 score performance on each of 14 possible
labels as defined by CheXpert for chest radiographs. We find that while the chest
radiograph feature extrator model and the double feature model result in lower
BLEU scores, they perform better across specific F1 scores and total F1 score.
We provide evidence to suggest that the choice of Imagenet, domain specific, or
combined feature extractor is dependent specifically on which medical knowledge
is most important for the application. This supports the further investigation of
using a combined domain specific feature extractor with an Imagenet pretrained
feature extractor for medical imaging captioning tasks.

1 Introduction and Related Work

In the medical domain, a task that appears in almost all specialities is the generation of reports
from medical imaging. Whether this imaging is simple 2D chest radiographs or 3D time series of
functional brain activity mappings, experienced clinicians generating many such reports daily are
error prone. In a medical setting, such errors could prove fatal. Advances in deep learning based
image captioning allow for the potential automation of such clinical tasks.

The captioning and report generation for chest radiographs is an emerging area of research with the
release in 2019 of MIMIC CXR, a dataset composed of over 220,000 studies with chest radiographs
and their associated clinical report [4]. State of the art models for such report generations have used
transformers, transformer coupled with relational memory, LSTM with reinforcement learning, and
retrieval techniques [5-7].

Current approaches use pretraining on Imagenet for the encoding of the chest radiograph as input to
the generation model. However, recent work has demonstrated that Imagenet pretraining does not
transfer well to medical domain tasks [3]. For high parameter models in the medical domain, Imagenet
pretraining does not provide a large boost, and more parameter efficient models for chest radiograph
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specific tasks can be constructed without Imagenet transfer learning [3]. This gap in Imagenet
feature learnings and medical domain features was shown to be significantly important in later task
performance [8]. In recent work, using radiographs to learn from labelled manual annotations, thereby
replacing Imagenet, resulted in outperforming Imagenet based state of the art models [8]. CheXpert
is a large dataset of chest radiographs matched with labels for 14 medical conditions: Enlarged
Cardiomediastinum, Cardiomegaly, Lung Opacity, Lung Lesion, Edema, Consolidation, Pneumonia,
Atelectasis, Pneumothorax, Pleural Effusion, Pleural Other, Fracture, Support Devices, No Finding
[9]. The large competition on CheXpert performance gives the opportunity to use a domain specific
feature extractor for chest radiograph input for later NLP tasks.

While state of the art methods, using Imagenet, have resulted in strong performance on standard
natural language generation metrics such as BLEU score, evaluation is significantly hampered by
the domain agnosticism of such metrics. Novel research demonstrated that such metrics assign
high scores to grammatically correct, yet, clinically irrelevant models [1, 2]. Therefore, we explore
evaluation techniques to emphasize medical semantic performance and study how different feature
extraction methods impact such medical semantic model performance.

The release of MIMIC-CXR dataset inspired multiple efforts for chest radiograph image captioning.
The field existed prior to the 2019 release; however, it was limited to datasets using only a few
thousands matched image to report examples. With the release of MIMIC-CXR containing over
200,000, more advanced models making use of novel transformer architectures catalyzed performance
in the growing field. The state of the art model, as quantified by BLEU Scores, used a transformer
architecture. It modifies the standard transformer to incorporate the concept of relational memory
by allowing the model to pay attention to past cycles during a generating cycle [5]. The improved
performance of this transformer based generating model inspired our approach to be transformer
based, rather than past LSTM and RL models [6,7, 10].

2 Approach

All models follow the format as depicted in Figure 1, using a visual feature extractor CNN to provide
a series of vector inputs representing positional features of the radiograph to the generating model.

Our baseline is a transformer with 6 encoder layers and 6 decoder layers that uses an Imagenet
pretrained densenet121 CNN as a visual feature extractor. We refer to this model as (IMG:TF)
for Imagenet pretrained Transformer. This was coded ourselves with significant modifications and
revisions to starter code from CATR Image Captioning [11]. Visual feature extraction was coded
ourselves with extracting layers and reshaping from PyTorch’s densenet121 pretrained model. We
use state of the art metrics for this task from recent work using transformer with relational memory, a
component that records memory information across the generation process [5].

The next constructed model is identical to IMG:TF except for its visual feature extractor. Rather than
using the Imagenet pretrained CNN to extract visual features (64x256 layer matrix) we extract the
same dimension layer from a CheXpert pretrained model. This model, ranked 5th in the CheXpert
leaderboard was trained to predict the presence of the 14 CheXpert labels from a chest radiograph
input [12]. This was used as the feature extractor in our generating model, and the 64x256 feature
vectors were used as input to the encoding block of the transformer, just as in IMG:TF. This model
we refer to as (CHX:TF) for CheXpert pretrained Transformer.

Our last model was built to investigate the potential benefit of inputting information trained on
Imagenet as well as information trained on CheXpert. By doing so object recognition as well as
medical knowledge may benefit the report generation process. To accomplish this, we investigated
how multimodal inputs are best incorporated in a transformer model. Each series of feature inputs
is passed through its own encoder block composed of encoding layers (Figure 2). Recent work has
explored whether these encoding layers should be concatenated or inputted "serially" each into its
own attention block in decoding layer, one after the other. Best performance was achieved in serial
models and thus is the design architecture that we use for the combined model [13]. This model we
refer to as (IMG+CHX:TF) for Imagenet and CheXpert pretrained Transformer (Figure 2).

A beam search of size 5 was used for generating on evaluation sets for the IMG:TF and IMG+CHX:TF
models, but not for the CHX:TF model as this required high compute and time resources and did not
improve performance in initial experiments.
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Figure 1: Base model for an automated chest radiograph report

Figure 2: IMG+CHX:TF model for an automated chest radiograph report

3 Experiments

3.1 Data

We use the MIMIC–CXR dataset [4]. It consists of a 3 channel JPG 256x256 chest radiograph
and associated clinical report by an expert radiologist. We use a training set composed of 152,173
radiographs and its distinct clinical report (only findings section); validation set of 1196, and testing
set of 2347. The images are randomized to select a variety of frontal, lateral, PA, and AP views for
the selected radiograph. Standard normalization using mean and standard deviation is applied across
all images. GloVe word embeddings are used. GloVe embeddings are used in this work as word
similarities were used to define embeddings for unseen words in the corpus and account for the most
frequent medical typos. However, in later experiments we will use a frozen BioBERT model. The
task is given a radiograph to generate its clinical report.

3.2 Evaluation method

To evaluate the generated reports we used the ground truth clinical reports and BLEU1,2,3,4 scores.
As discussed, the BLEU metric has been shown to be domain agnostic and reward grammatically
correct but clinically irrelavant models. As the field of radiology begins to move towards a structured
report, a metric for correct labeling of common conditions and findings in the reports is required.
To accomplish this we made us of the CheXbert Automatic Report Labeler [14]. CheXbert uses
free text unstructured report as input and outputs the 14 CheXpert medical labels. Each label
(condition/finding) is assigned a 1.0 (positive), 0.0 (negative), -1.0 (uncertain), or Blank (NaN). We
extracted this set of 14 labels for the ground truth reports as well as generated reports for IMG:TF,
CHX:TF, and IMG+CHX:TF models. For each label, and for each model, F1 score was calculated as
well as the total F1 score for each model across all findings labels.
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3.3 Experimental details

All three models were run for 10 epochs (until validation set loss plateaued) with batch size
64. IMG:TF and CHX:TF had one encoder block and one decoder block with 6 layers each.
IMG+CHX:TF had two encoder blocks (Figure 2) with 6 layers each and one decoder block with 6
layers.

A learning rate scheduler was used to decrease learning rate as training continued and gradient
clipping used. Adam optimizer was used. Each layer for both transformers multihead attention head
count was 8. Learning rate for the model’s backbone was 1e-05 and learning rate for all non–backbone
components was 1e-04.

3.4 Results

Figure 3: BLEU Metrics across models

Figure 4: F1 Scores for Total and across the 14 CheXpert labels

The first thing to notice about the results is that the F1 score was not able to be calculated for some
categories such as Enlarged Cardiomediastinum for IMG+CHX:TF or Consolidation for any of the
models. The reason for this is that a random sample of 200 images from validation set, which is
1100 total images, were used for metric evaluation. These reports had a zero true positive value
for prediction of these labels. CheXbert labeling assigns a score of -1.0 when it is uncertain. For
our purposes we only considered a score of 1.0 to be a prediction. By including these -1.0 maybe
predictions F1 scores for the remaining categories can be calculated but the degree of confidence
we have in the quantitative values across all categories will be reduced. Next, we notice that by
BLEU(1-4) metrics, IMG:TF is the superior model. However, by total F1, it is the worst model.
This agrees with reports of the BLEU metric being domain agnostic in medicine and rewarding
grammatic yet clinically irrelevant models [1-2]. It is likely that CheXpert visual extraction decreases
the grammar quality but increases the knowledge level of the reports.
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Interestingly, IMG:TF is superior by F1 metric for some specific label categories such as Support
Device (such as pacemakers and catheters) identifications. This is likely as Imagenet pretraining
allows for robust object detection and identification while CheXpert pretraining results in more
condition based understanding. It is likely for this reason that combining the two approaches in
the IMG+CHX:TF model results in consistently high performance across labels, increasing from
CHX:TF for Support Device identification (while not quite reaching that of IMG:TF) as well as
increasing from IMG:TF for Pleural Effusion (while not quire reaching that of CHX:TF). From the
state of the art Chen et al paper, total F1 score of the model is reported as 0.276 which is the best in
the reported literature they survey. Our F1 score of 0.433 may be increased as we use CheXbert for
labeling while the Chen et al paper uses CheXpert labeling, which is significantly worse performing
in labeling than CheXbert [5, 14]. Due to the differences in F1 methodology, a direct comparison of
the scores across our models to the Chen et al model is discouraged.

4 Analysis

In this section we seek to analyze the reports themselves that are outputs of the same input image
across both the IMG:TF and IMG+CHX:TF models. We choose these two models to compare as the
only difference between the two is IMG+CHX:TF being supplemented by an encoding block with
CheXpert feature extraction inputs. Thereby, by doing a direct comparison between the two outputs
we may illustrate the medical knowledge gained by such combined feature inputs. In Appendix Figure
5, we see an incorrect diagnosis made by IMG:TF model but No Findings reported by IMG+CHX:TF
model. The IMG:TF model seems to focus less on reporting of conditions rather than more so
describing what is observed. In Appendix Figure 6, IMG:TF again misdiagnosis a plural effusion
which is correctly identified as absent by IMG+CHX:TF model. We see that the IMG+CHX:TF
model claims the heart is mildly enlarged whereas the ground truth states that this is in fact severe.
In Appendix Figure 6, an interesting effect is noted that IMG:TF identifies the pacemaker correctly
and IMG+CHX:TF correctly identifies a support device; however, IMG:TF describes in more detail
where the leads extend. This superior description is likely due to a better understanding of the image
features due to pure Imagenet feature dependence of the model inputs. In Appendix Figure 7, again,
both models correctly identify the support device and make a correct diagnosis of left pleural effusion;
however, the example is included to demonstrate a problem in generating such reports. Because the
ground truth reports that train the model contain a high frequency of comparison phrases to past
visits, the generated reports mirror this; however, by definition the model has almost no information
pertaining to past observations and thus these sentences are errant. Future approaches should seek to
limit this incorrect information from making it into the final generated report. Interestingly, correct
approaches to such would result in decreased BLEU(1-4) performance, again demonstrating the need
to include more domain specific metrics in evaluating future models.

5 Conclusion

This project demonstrates that image captioning and report generating tasks from image or video
input in the medical domain can seek to benefit from domain specific CNNs, or multimodal domain
specific CNNs combined with Imagenet trained CNNs, for visual feature extraction as model inputs.
Specifically, in the chest radiograph domain, Imagenet pretraining alone for the visual feature
extractor results in lower performance in the pure identification of findings from the imaging. Our
highest performing approach, as evaluated by total F1 score, the combined Imagenet and CheXpert
pretraining should suggest future models to make use of multimodal transformers with separate
encoding blocks to capture both image feature and medical specific knowledge from input image. Our
work also exists as further evidence as to why BLEU score should not be used as sufficient criteria
to proclaim emerging models as state of the art in the field of automated medical report generation.
We demonstrate that the highest achieving BLEU score model scored the worst on F1 criteria. As
we move forward in this work, we seek to use F1 labelling during training time so as to penalize or
reward the loss function for medical labelling accuracy so as to increase medical knowledge of the
models during their training time. Doing so may itself help the models move away from sentences
describing comparisons to past presentations of the patient. Finding the right balance between cross
entropy and findings label accuracy will be essential to develop automated models that have high
confidence so as to be used to pave the way towards medical accessibility, medical education, and
clinician assistance for error reduction.

5



6 Appendix

Figure 5: Generated reports in one case of "No Findings"

Figure 6: Generated reports in one case of "Support Devices"/"Cardiomegaly"

Figure 7: Generated reports in one case of "Pleural Effusion"

7 Contributions

Ethan Schonfeld was responsible for preprocessing, including: word embeddings, high frequency typo
embedding corrections, and image/report parsing. Ethan Schonfeld was also responsible for feature
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layer extraction from the CNN pretrained models used. Ethan Schonfeld and Edward Vendrow jointly
constructed the transformer models and modified their various architectures. Edward Vendrow created
the dataset script and dataloader. Edward Vendrow implemented beam search. Ethan Schonfeld
was responsible for BLEU implementation, CheXbert labeling, and F1 evaluation. Ethan Schonfeld
wrote this report and Edward Vendrow assisted in figure construction and literature review. Dr. Greg
Zaharchuk advised us that the future of chest radiograph reports will become structured text.
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