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1 Abstract

We hypothesize that deep networks are superior to linear decoders at recovering visual stimuli from
neural activity. Using high-resolution, multielectrode Neuropixels recordings, we verify this is the
case for a simple feed-forward deep neural network having just 7 layers. These results suggest that
these feed-forward neural networks and perhaps more complex deep architectures will give superior
performance in a visual brain-machine interface.

2 Introduction

A visual brain-machine interface needs to decode images from cortical activity [!], particularly
natural images which have distinct spatial frequency spectra [2]. While natural images cause sparse
activation of neurons in visual cortex (V1) [3] [4] [5], how this sparse set of neurons represents a
given image and how the image can be inferred (decoded) from sparse activity is unclear.

Linear decoding assumes that the represented image is a linear function of neuron activity. Such
decoders underlie classic visual neuroscience theory [6] [7], but are results of experiments featuring
small numbers of electrodes, e.g. [8]. As advancements such as optogenetics, two-photon imaging,
and electrode design increase the scale of availale physiological data, linear decoders may struggle
to keep pace in their performance, while deep learning continues to outperform linear decoders as
the state of the art in a multitude of tasks and brain regions [9] [10] [11] [12] [13]. The caveat to
increased performance is that deep networks perform best with larger training data in the form of
function input/output.

Until recently, direct neural data in the form of electrode recordings were limited to few (order of
one hundred) measurements in a single brain region using hardware such as the Utah Array. [14]
Neuropixels [15] are a recent hardware advancement that give not only an order of magnitude increase
in number of electrodes, but also data from multiple brain regions simultaneously. A public dataset
of neuropixel recordings in mice was recently made available online [16]. With this rapid expansion
of available data, deep networks are poised to offer state of the art decoding performance from visual
cortex activity.
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Figure 1: Computing Decoder Input: Spike rates are computed by counting the number of spikes in
a window of length 7 after the image onset. The resulting spike rates are then z-scored to zero-mean
and unit variance to form the decoder input data.

3 Data Collection & Feature Extraction:

The Neuropixels Dataset [17] covers 58 experiments in which visual stimuli ranging from Gabor
functions to natural scenes are presented to mice with multiple neuropixels probes inserted into visual
cortex. The length of the probes also permits recordings from subcortical structures such as the
Lateral Genticulate Nucleus (LGN) and Lateral Posterior (LP) nucleus. High-pass-filtered electrode
recording data is statistically whitened before being passed through the Kilosort2 algorithm to identify
specific neurons, giving spike times for a set of neurons/units assigned to a given anatomical region

[18].

The decoder maps measured spiking rates recorded by the probes to the images presented to the
subject on a 1920 x 1080 monitor. That is, we infer the image on the monitor from the spiking
activity.

Input Spike Rates: We compute the spike rates for each of N, ¢yr0ns by measuring the number of
spikes in window of length 7 after a given image is presented as in figure (1).

Spike rates are then z-scored so that each channel has zero mean and unit variance across the time of
recording. Using the linear model described below, we empirically determine that the optimal window
length is 167ms. As shown in figure (2), this length offers the best trade-off between accuracy and
latency, since the improvement on accuracy versus integration time switches from exponential to
linear.

Output Images: The network’s output are the presented 1920 x 1080 images presented at the
beginning of the integration window of length 7 = 30 ms. To reduce the dimensionality, we resample
the images by averaging to size 120 x 64. The monitor spanned 120° x 95° of the mouse visual field,
so the resampled resolution limits the spatial frequency of the presented images to 0.5 cycles/®, the
approximate limit of spatial frequency observable by mice [19]. Thus, we preserve all perceptible
visual information while reducing the size of the image by a factor of 162. To improve the network
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Figure 2: Determining the Optimal Integration Window length. Using a linear model, we computed
the best least squares fit of spike rates to pixel intensities over 90% of the dataset. The remaining %10
percent of images was then predicted from the resulting linear model. The accuracy was computed
using equation (2) over the resulting predictions.

learning rate, we then zero mean the pixel intensities from [0, 255] to [—128, 127]. Finally, the images
are flattened to 128 x 64 = 8192-vectors.

Here we considered recording data from one session (ID: 840012044) over exclusively natural stimuli
(’natural_movie_one_more_repeats’), giving a total of 54, 000 frames presented over 80 minutes at
two separate intervals.

4 Decoding Model Selection, Training, & Evaluation

We evaluate a linear decoding model and compare it to a deep feed-forward neural network.

Model Objective: We consider the mean square error as a loss function, common in image processing
literature [20]. The mean square error (MSE) measures the norm of the difference in pixel intensities
between the true image y and predicted image ¢:

MSE = ||y - glf3-

Model Training: To train the deep network, we use batch gradient descent with the Adaptive Moment
Estimation (Adam) algorithm [21] using a batch size of 1000, and a learning rate of ¢ = .0001. The
deep network model is a feedforward sequential network with 7 hidden layers with input length
Npizels, depth of 7 and width of 77 as sketeched in figure (3). These numbers were chosen by training
a new network for each combination of logarithmically spaced parameter values and evaluating the
performance after 1000 epochs.

For the linear decoder, the MSE objective has an analytic solution:
Fr =X, (1)

where X € RNsamptes XNneurons - gives the recorded spike rates, Y € RVsampics X Npizets gives the
presented images, and F© € RNneuronsXNpizels gjyes the linear mapping between spike rates and
images. Each row of F' gives the pixel intensities decoded by a spike in that respective neuron.

5 Results

We trained each model on the MSE loss function using the complete dataset, i.e. all channels from all
anatomical regions. Accuracy is measured by the average percentage of the error between the true
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Figure 3: Sketch of the Feedforward Deep Network Used in Image Prediction. The parameters are
Npeurons = 701, Nyiarn, = 77 with 7 layers, and Np;zers = 8192.

Model H Linear | Deep Network | Random Output H
Train Accuracy || 40.0% 55.5% <1%
Test Accuracy || 39.53% 53.5% <1a%

Table 1: Model Accuracy Computed using all Nycyrons for linear, deep, and random (null) models.
For the latter, pixel values of the predictions were randomly chosen to have same mean and unit
variance as the target images from a Gaussian distribution.
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Table (1) lists the accuracy for each model and error metric. We see that the deep network outperforms
the optimal linear decoder by roughly 15%. This metric improvement is also visible in the decoded
images. A sample image comparing the presented image with the two model predictions is given in
figure (4)

6 Conclusions & Future Work

We’ve shown that deep networks are more effective at decoding visual information from neural
activity than their linear counterparts. This implies that a deep network will outperform a linear
decoder when used in a visual brain-machine interface. Given the simplicity of the architecture and the
expansive research in deep learning, future work could incorporate more sophisticated designs such as
Convolutional Neural Networks(CNN’s) , and various forms of Recursive Neural Networks(RNN’s)
to process the sequential nature of temporal spike recordings.
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Figure 4: Comparison of Presented (Top) Image and Predictions Made by Linear (Middle) and Deep
(Bottom) Decoders.
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