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1 Introduction

1.1 Description

Synthetic aperture radar (SAR) provides high-resolution, all-day, all-weather satellite imagery, which
has become one of the most important means for high-resolution ocean observation and is well suited
to better understand the maritime domain. We use the LS-SSDD-v1.0 open source SAR dataset
to build and train a computer vision small vessel detection model which automatically generates
bounding boxes around maritime vessels [1]. This type of automation would allow regulatory
agencies to better conduct shipwreck rescue, fishery enforcement, and vessel traffic management.
Our implementation is publicly available on Github. 1

Figure 1: An example of large-scale image and sub-image from LS-SSDD-v1.0 SAR Imagery
Dataset.

1.2 Challenges

Object detection from SAR imagery is challenging for a variety of reasons. Some ship targets and
non-ship targets such as waves, dams, islands, icebergs, or reefs, have approximate backscattering
intensity in SAR imagery that makes ship detection in SAR imagery difficult [2]. Moreover, many low-
level and mid-level image features that have been widely used in object detection and classification
applications cannot be introduced directly into ship detection via SAR imagery, which imposes an
additional challenge. Lastly, detecting small objects in large-scale remote sensing images remains an
unsolved problem within the computer vision literature.

1https://github.com/jakee417/LS-SSDD-v1.0-ShipDetectionComputerVision

https://github.com/jakee417/LS-SSDD-v1.0-ShipDetectionComputerVision


1.3 Related Work

A survey of works related to deep learning-based object detection and specifically small object
detection can be found in [3] and [4], respectively. For this project, we use the dataset and
benchmark results given by [1], which has related research in [5; 6; 7]. Data Augmentation for
small object detection approaches can be found in [8; 9].

2 Dataset

We use the Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) from Sentinel-1 [1].
LS-SSDD-v1.0 contains 15 large-scale 24,000 × 16,000 pixel, SAR images. The original large-scale
SAR images are cut into 9000, 800×800 pixel sub-images shown in Figure 1. The authors use the first
10 of the 15, large-scale images as the training set (train). The last 5, large-scale images are used as
the test set (test). test is further broken down into 2234 offshore sub-images (test offshore)
and 766 inshore sub-images (test inshore). Differences between the datasets are shown below in
Table 1 and Figure 2:

Dataset # Imgs # Ships % Imgs w/ Ships Ship/ *Img Ships Pixel/ *Img Pixel
train 6000 3637 0.18 3.23 0.0016
test 3000 2378 0.24 3.23 0.0023
test offshore 2234 1495 0.27 2.41 0.0021
test inshore 766 883 0.15 7.54 0.0030

Table 1: LS-SSDD-v1.0 datasets. *Img denotes an image that has at least one ship.

Figure 2: (Left) Sample of pixel intensity frequencies. (Right) Inshore and Offshore scenes.

3 Evaluation Metrics

For vessel detection, we use the score threshold of 0.5, intersection over union (IOU) threshold of
0.5, and non-maximum suppression (NMS) threshold of 0.5. To verify baseline model to [1], the
following evaluation metrics are considered on test: Detection Probability (Pd), False Alarm (Pf ),
Missed Detection (Pm), Recall, Precision, Mean Average Precision (mAP), and F1 score. To compare
the baseline model results with further modelings, only mAP is used as a single evaluation metric.

4 Learning Methodology

4.1 Baseline Models

To simulate the results given in [1], we implemented two baseline models from Facebook’s Detec-
tron2 API [10; 11] . The two neural network architectures we used are (1) Faster Region-Based
Convolutional Neural Network (Faster R-CNN) [12] and (2) RetinaNet [13], both pre-trained on the
COCO dataset. For both of these models, we used ResNet-50 with Feature Pyramid Network (FPN)
pre-trained on the ImageNet dataset as the backbone [14]. To ensure consistency with reference
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[1], we trained on all of train (no validation dataset) using mini-batch gradient descent (MGD)
with momentum for 12 epochs (36k iterations) and matching hyperparameters when possible given
different APIs used. The comparison between Original Paper (OP) and Baseline Model (BM) results
is shown in Table 2.

Dataset (Source) Model Pf Pm Recall Precision mAP F1

test (OP) Faster R-CNN 26.26 22.29 77.71 73.74 74.80 0.76
test offshore (OP) Faster R-CNN 17.18 8.09 91.91 82.82 89.99 0.87
test inshore (OP) Faster R-CNN 44.04 46.32 53.68 55.96 46.76 0.59

test (OP) RetinaNet 5.38 44.49 55.51 94.62 54.31 0.70
test offshore (OP) RetinaNet 4.68 22.34 77.66 95.32 76.15 0.86
test inshore (OP) RetinaNet 10.17 81.99 18.01 89.83 17.29 0.30

test (BM) Faster R-CNN 26.00 25.23 74.76 73.99 71.32 0.74
test offshore (BM) Faster R-CNN 18.06 8.36 91.63 81.93 89.00 0.86
test inshore (BM) Faster R-CNN 44.18 53.79 46.20 55.81 38.64 0.50

test (BM) RetinaNet 58.03 41.97 58.03 80.33 53.02 0.67
test offshore (BM) RetinaNet 13.14 21.74 78.26 86.86 73.44 0.82
test inshore (BM) RetinaNet 43.40 76.21 23.78 56.60 16.89 0.33

Table 2: Comparison between Original Paper (OP) and Baseline Model (BM) results.

When inference was conducted on train, a much lower level of performance was observed, which
is summarized in Table 3. As reported in [1], when inference was conducted on test offshore
and test inshore, we also observed that test offshore always has a much higher performance
than test inshore, which is likely due to the absence of near-shore backscattering. Referring
back to Table 1 and Figure 2, we have evidence to believe that train and test come from different
distributions and that train’s distribution may be more similar with test inshore’s distribution.
Thus, there is a need to introduce a new strategy to better estimate out-of-sample performance on
train. For the rest of this paper, we will use Baseline to denote the Faster R-CNN baseline model.

Dataset mAP @ 36k mAP @ 72k mAP @ 108k mAP @ 144k
train 52.32 55.02 62.83 65.81
test 71.32 70.90 70.40 67.96

Table 3: Baseline performance on train versus test at various training iterations.

4.2 Baseline to Improved: Validation Set, Learning Rate Scheduling, and ResNext

To better estimate out-of-sample performance, we depart from [1] and adopt train’ and validation
datasets on an improved model called Improved. We first randomly shuffle train and then split 85%
of train into train’ and the remaining 15% of train into validation. test is kept unchanged
so that Improved results are comparable with the Baseline and [1]. Another benefit from using
validation is that we can use learning rate scheduling based on validation mAP. Specifically,
we scale the learning rate by 0.1 if the current mAP score is within a relative threshold of 0.01 of the
best mAP observed with one epoch patience. To address the issue shown in Table 3, we fit a Faster
R-CNN with a ResNeXt-101-32x8d FPN backbone to benefit from its state of the art results [15]. A
schematic of ResNeXt block architecture compared to ResNet block is shown in Figure 3.

Figure 3: (Left) A ResNet block. (Right) A ResNeXt block with cardinality = 32.
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4.3 Baseline to Improved: Data Augmentation

To avoid overfitting to train’ on Improved, we incorporate standard data augmentation techniques
such as; random rotation, brightness, contrast, lighting, and saturation. The other challenge in training
small object detection models is ensuring that anchor boxes overlap with such small ground truth
bounding boxes [8; 9]. To overcome this, we use a copy-paste procedure similar to [9], which
augments train’ with random copies of ship annotations:

1. For each annotation A in an image I, make dCe : C ∼ U [0, π] copies of A.
2. For c ∈ C, consider pasting c, dXe : X ∼ N (~0, σ ∗ I2) pixels away from A.
3. Reject c if: c intersects with another annotation A′, the Paste-Mask, or is outside of I.

We use Otsu’s method, a histogram-thresholding algorithm, to create a Paste-Mask which prevents
unrealistic paste locations from occurring [16]. Otsu’s method excels for images that have areas
of high contrast differences (containing land and sea) like those in test inshore. Although [9]
copies templates of ships uniformly at random across an image, we found that simply copying each
annotation to locations decided by a Gaussian Mixture Model (GMM) is sufficient to create a realistic
augmented scene. We use π = 5 and σ = 300 on Improved. Examples of an original, masked, and
augmented image are given in Figures 4 and 5.

Figure 4: Examples of Paste-Mask. Black pixels show where legal pastes can occur.

Figure 5: Examples of Copy and Paste Data Augmentation.

5 Results

By using train’ and validation, now the model (Improved) reflects a better estimate of out-of-
sample performance, which is shown in Table 4. Improved also shows higher model capacity and
less signs of overfitting due to the learning rate scheduling and data augmentation.

Dataset mAP @ 20k mAP @ 25k mAP @ 30k mAP @ 35k
train’ 56.83 56.90 56.65 57.13
validation 44.20 51.59 51.41 51.75

Table 4: Improved performance on train’ versus validation at various training iterations.

4



Training curves on Improved for train’ loss, validation loss, learning rate, and validation
mAP are shown in Figure 6.

Figure 6: Training curves on Improved.

Finally, a comparison between Baseline and Improved based on mAP is given in Table 5. For
completeness, we show results for Improved with and without data augmentation.

Dataset (Source) Model Data Augmentation mAP
Validation Baseline No 44.87
Validation Improved No 46.67
Validation Improved Yes 51.75

test Baseline No 68.85
test Improved No 67.82
test Improved Yes 71.37

test inshore Baseline No 36.22
test inshore Improved No 36.40
test inshore Improved Yes 42.94

Table 5: Comparison between Baseline and Improved results.

A plot of various evaluation metrics and samples of output from Improved with data augmentation
are included in Appendix A.

6 Discussion and Conclusion

Although there is an improvement on test inshore with Improved, we still observe a large
difference in performance between the test inshore and test offshore. This observation is
due to the fact that ships in inshore scenes are harder to detect than offshore scenes because of the
interference of land and backscattering [2]. A better land masking strategy such as the methodology
proposed in [17] or adding a bathymetry mask to the dataset [18] may help improve the performance
of ship detection in inshore scenes. It appears that the combination of standard + copy-paste data
augmentation as in Improved is an effective way for improving performance on test inshore.
Despite these improvements, copy-paste data augmentation could also benefit from more accurate
sea-land masking in future work. Lastly, the results on Improved further confirm that train and
test do come from different distributions. Therefore, it is important to make sure that validation
is drawn from the same distribution as test and that both reflect data we expect to get in the future.

7 Contribution

Both group members contributed equally to the project. We would like to thank CS230 Project TA
Avoy Datta for project guidance throughout the quarter.
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A Improved Output

Figure 7: Precision-Recall Curve, Class Confidence Scores, and IOU between Predictions and
Ground-Truth obtained from Inference on test.

Figure 8: Comparison of Predictions and Ground Truth on test inshore without backscattering.

Figure 9: Comparison of Predictions and Ground Truth on test inshore with backscattering.
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