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Abstract
A variational autoencoder is employed to gain insights into two physical systems: a particle settling under gravity in a viscous
fluid, and a chemical reactor. The network architecture allows the interpretation of neuron activations in the latent layer in terms
of physical parameters governing system behavior. The network takes as input a set of observations, a question regarding the
state of nature under particular conditions, and an answer describing the state of nature under said conditions. The architecture
was shown to yield accurate, interpretable results in both physical systems of interest, correctly discerning the parameters
governing the physical systems and storing them in the latent neuron activations, and providing additional physical insight into
the systems at hand.

1 Introduction

Figure 1: Example data for the particle motion
problem.

From Archimedes to Ibn-Khwarazmi to Newton, physicists have always relied upon a combina-
tion of observation of nature and deductive reasoning to discover the laws of nature. Physicists
generally have access to a set of observations tou, often from experimentation, that are indica-
tive of a deterministic relationship among variables of interest. The objective of the physicist
is then to determine the function f which represents the deterministic mapping between sup-
posed physical conditions termed questions q to particular states of nature termed answers a,
i.e. f : q Ñ a. Crucially, once f has been found, its structure is then analyzed, for it is the
interpretation of this structure that yields insight into the inner workings of natural laws. That
f be merely an accurate mapping from q to a is a necessary condition for meaningful physical
analysis, but it is not sufficient.

Traditional neural network architectures used in deep learning are akin to “black-boxes”, in that
with a sufficiently large observational data set tou they can be trained to offer an accurate map-
ping function f : q Ñ a, but offer little insight. This is because the activations of hidden layers
in a deep neural network, though containing the information necessary to achieve the afore-
mentioned accurate mapping, represent a high-dimensional non-linear parameter space. This
is in stark contrast to traditional physics-based models, where each model parameter represents
specific physical mechanisms or their interaction. Consequently, physics-based models have a
high degree of interpretability. Nevertheless, developments in interpretable deep learning have
suggested a promising path towards automatic scientific discovery.

A deep learning model called Scinet, which incorporates a variational autoencoder [1], was
shown to automatically extract physical laws from several fundamental physics problems.
When employed to predict planetary motion from raw geocentric planetary angles, the model’s
interpretable latent activations were shown to transform planetary angles from geocentric to
heliocentric coordinates, thus demonstrating the network’s ability to automatically recover necessary intermediate steps within complex calcula-
tions from unprocessed observations. To this end, we have applied the SciNet network architecture to extract interpretable scientific insight from
canonical problems in fluid dynamics and combustion.

We will discuss the details of the network architecture in Sec. 4. Briefly, the inputs to the encoder network are a set of observations |tou| “ No,
where each observation is a vector in Rn of observed variables rv1, v2, ..., vns. The data input to the decoder network is a question q, which is a
variable which defines the condition under which the state of nature is to be inquired, with other inputs coming from other parts of the network.
The output of the decoder network is the answer a, which is the state of nature under the conditions stipulated by the question q.

2 Related work
There has been growing interest in the use of what can be broadly considered “data-driven” techniques for the advancement of the field of
physics, as opposed to the traditional “pen-and-paper” methodology. A conservative approach (conservative in the sense of similarity with
traditional physical analysis) was taken by Floryan and Graham [2]. The authors employ a spectral decomposition technique and combined it
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Encoder Decoder # Training samples # Dev samples # Test samples
[500,100] [100,100] 200,000 10,000 10,000

Table 1: Scinet architecture and dataset breakdown used for the particle motion sub-problem.

Encoder Decoder # Training samples # Dev samples # Test samples
[500,100] [100,100] 1500 250 250

Table 2: Scinet architecture and dataset breakdown used for the chemistry sub-problem.

with a data-driven approach to extract the persistent features of physical systems across large ranges of time and scale. A more radical approach
was taken by Wu and Tegmark [3], who aimed to develop an “AI physicist”. They combine a number of ideas from both artificial intelligence and
classical physics to develop an “agent” whose purpose is to learn new theories of physics and attempt to unify them when presented with data in an
unsupervised setting. The authors successfully demonstrate their model by applying their agent to accurately predict particle motion in domains
governed by a harmonic potential field, a gravitational field and an electromagnetic field. An approach that lies between the two aforementioned
extremes is that proposed by Iten et al. [1], upon which this project is based. The authors refrain from creating an agent-based automatic physics
discovery system, but instead use an encoder-decoder architecture where a latent neuron layer is designed to capture physical insights in a
fashion inspired by the process physicists employ in traditional analysis. The authors apply their methodology to various physical systems and
demonstrate that their architecture is well-suited to capturing key insights into system behavior and stores them in the activations of the latent
neurons, such as the number of parameters necessary to accurately describe system dynamics, and even coordinate transformations.

3 Dataset and Features
3.1 Particle Motion

Figure 2: Architecture of Scinet (taken from [1],
Figure 1b)

The motion of a particle in a viscous fluid is typically described by ODEs relating the forces
on the particle to its velocity [4]. These forces are parametrized by properties of the fluid and
particle, and its velocity, which may not be constant in time. A very simple model for particle
motion is described by two constant parameters, the Stokes number, St which describes the
drag force, and the Froude number Fr, which describes the gravitational force. Given a particle
initially at rest at position x “ 0, its future position at time t is given by

xptq “ St2Frr1´
1

St
t´ expp´t{Stqs (1)

Fr is sampled uniformly from the range r0, 5s and St is sampled logarithmically from the range
r0.01, 100s to synthetically generate training data for this problem. The observations are a set
of 50 xptq, uniformly spaced in the range t “ r0, 1s, evaluating equation 1. The “question” is
a time randomly chosen in the range tq “ r0, 2s, and the “answer” is the position xptqq. This
forces the decoder to extrapolate to a time where it does not have direct observations. Example
observations, questions, and answers for two different parameter combinations are shown in
Figure 1.

This problem setup is very similar to the pendulum problem studied in [1], and so the same architecture is used. The architecture details and
dataset size are given in Table 1.

3.2 Chemistry
We apply the chemistry package Cantera [5] to calculate the formation of CO2 and water from methane and oxygen with a single step chemistry
in an isothermal zero-dimensional reactor:

CH4 ` 2O2 ÝÑ CO2 ` 2H2O (2)
drCO2s

dt
“ kf pT qrCH4srO2s

2 (3)

where the forward rate constant kf is a function of temperature and the brackets [φ] refer to the concentration of scalar φ. 2000 samples of data
are generated from range T “ r1000, 3000s K.

The “observation” data consists of CO2 mass fraction YCO2 as a function of time before time t “ r0, 12.5s µs, with a timestep of 0.5 µs. The
“answer” consists of YCO2 at t “ r0, 25s µs, and the “question” consists of 3 neurons corresponding to time, YCH4, and YO2. The training details
for Scinet are provided in Table 2.

4 Methods
We employ the Scinet architecture in this study, shown in Figure 2. Scinet trains an encoder on observation data o, which condenses the input
to a much smaller latent representation. Then, instead of reconstructing the input directly, the latent representation and question q are fed into a
decoder network to provide an answer a. Users provide triples of po, q, aq as training data. This structure mimics the scientific task of observing
experiments, creating a model, and assessing the accuracy of the model predictions.
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Training phase Batch size Learning rate β # Epochs
1 512 10´3 10´3 1,000
2 1024 10´4 10´3 500
3 1024 10´5 10´3 500

Table 3: Hyperparameters used to train Scinet on the particle motion sub-problem.

Since the goal of this network is a model which is both descriptive and interpretable, there are two parts to the Scinet loss function, which is based
on the β-VAE cost function [6]:

Cost “
1

Nbatch
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i“1

˜
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˘

˙

¸

(4)

where the first term represents the distance between the correct and predicted answers, a and â. The second term approximates the KL divergence
under certain assumptions detailed in the supplemental material of [1]. µij and σij represent the mean and standard deviation of the latent activa-
tion distribution for latent neuron j on example i. β is a hyperparameter which controls the relative importance of the two objectives. Individual
terms are summed over Nbatch examples in a batch. Depending on the physical problem addressed, Scinet uses different hyperparameters, but
generally speaking, it uses 2 fully connected layers each in the encoder and decoder. The Adam optimizer is used, with Op100, 000q examples,
5% of which are used in the dev set.

5 Results and Discussion
5.1 Particle Motion

Figure 3: Training and dev losses during train-
ing of Scinet with 2 latent neurons, and the ab-
solute value of their difference.

The training hyperparameters are largely adapted from the “pendulum” problem in [1], but also
using multiple phases as in their “heliocentric” problem. The parameters used during training
for all of the following results are shown in Table 3. Decreasing the learning rate and increasing
the batch size through multiple phases of training was helpful in reducing the large oscillations
in the loss function, which can be seen in Fig. 3. The difference between training and dev losses
is consistently about 3 orders of magnitude smaller than the losses themselves, which indicates
that overfitting is not a problem.

A key goal of Scinet is to correctly determine the minimum number of parameters needed to
fully describe a dataset, where each parameter is represented by the activation of a different
latent neuron. To assess the network’s performance, we used the same procedure to train net-
works with 1´ 4 latent neurons. The components of the loss function (reconstruction loss and
KL divergence loss) are plotted against the number of latent neurons in Figure 4. This shows
a substantial improvement in reconstruction loss going from 1 to 2 neurons, and then no added
benefit. The KL divergence loss increases slightly when using more than 1 neuron, but this is
somewhat expected as there are more latent neurons to sum over. The fact that the KL loss does
not increase beyond 2 neurons indicates that the additional neurons are not active.

When the latent space is too small, the network is forced to learn a representation which is
too compact to represent all the characteristics of the data. When the latent space is too large,
Scinet should set those unecssary activations to zero. This behavior is demonstrated in Figure
5, which shows the latent activations on test data for networks with 1´3 latent neurons, plotted
against the input parameters. A few observations can be made:

• With more than 1 neuron, the ordering of the latent activations is probably a result of random initialization. Nothing was done to ensure
similarity among the first neurons.

• The contours of the first activation are very similar across cases. However, with the 2 neuron network, the activation appears to be
multiplied by ´1. This is probably also a result of random initialization, and it indicates that the learned parameters could be simple
transformations of the true parameters.

• The fact that the 1 neuron network has learned essentially the same representation as the first neurons of the other networks suggests that
Scinet could be used to identify useful reduced models for physical phenomena, which have a more limited range of applicability.

Figure 5 can only be made when the input parameters are known. However, it suggests that for networks with several active latent neurons, the
extracted feature can be understood by dropping out different neurons and assessing the kinds of errors the network makes. This may help suggest
to the scientist the kinds of patterns the network has been able to find.

5.2 Chemistry
Training Scinet for the chemistry problem adopted a similar approach to the particle problem in section Section 5.1, with hyperparameters shown
in Table 4. Since only 2000 datapoints are used for train, dev, and test sets, a smaller batch size has been adopted. Training is found to have
converged around 200 epochs as shown in Fig. 6b. The difference between training and dev losses is consistently about 2 orders of magnitude
smaller than the losses themselves, which indicates that overfitting is not a problem. Additionally, the predictions from Scinet are found to be in
good agreement with the correponding true CO2 mass fractions as shown in Fig. 6a.
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Figure 4: Components of the loss function evaluated on test dataset as a function of the number of latent neurons in the particle problem.

Figure 5: Comparison of latent space activations as a function of the governing parameters and the number of latent neurons in the particle
problem.

(a) (b)

Figure 6: (a) Predictions and (b) losses from the chemistry problem.

Training phase Batch size Learning rate β # Epochs
1 32 10´3 10´3 100
2 32 10´4 10´3 100
3 32 10´5 10´3 100

Table 4: Hyperparameters used to train Scinet on the chemistry sub-problem.
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Figure 7a shows the latent space activations for the range of temperatures explored in the chemistry problem. At first glance, no discernible
relationship is observed between the latent activations and temperature. However, the behavior latent space can be divided into 3 regions. At
T ă 1400 K, the formation of CO2 is incomplete for the timeframe investigated, and can be described as a linear relationship. Thus, the latent
space will not fully describe the reaction involved. At T ą 1800 K, the autoencoder is asked to predict CO2 formation after the reaction is
completed, where the CO2 mass fraction is constant. Thus, the latent space does not provide meaningful information on the reaction. In essence,
meaningful information can only be extracted when T “ r1400, 1800s K, which is highlighted in blue in Fig. 7. This is shown in Fig. 8 where all
three latent space activations possess a strong linear relationship with the forward rate constant of the reaction kf , which is the sole parameter in
Eq. (3), in the interpretable region.

(a) Latent activation vs temperature. (b) CO2 mass fraction vs temperature.

Figure 7: Interpretable regions of the dataset in the chemistry problem.

6 Conclusion/Future Work

Figure 8: Latent activation vs forward rate con-
stant in the interpretable region.

A variational autoencoder network architecture called SciNet was applied to two problems in
physics: that of a particle settling in a viscous fluid under gravity, and chemical reactor. It was
sought to use the network to glean physical insights regarding the nature of the problems con-
sidered through the analysis of the latent space in the trained network. In the former problem,
the network was shown to correctly identify the number of parameters necessary to fully de-
scribe the system, in that the addition of latent neurons beyond the two required did not result
in improved accuracy. Furthermore, upon consideration of the latent neuron activations, it was
clear that the network set the activation of the additional neurons to zero, allowing the clear
interpretation of the activations as the correct parametrization of the physical system. In the
latter problem, the network allowed the segmentation of the parameter space into interpretable
and non-interpretable regions, which followed directly from the system dynamics. In particu-
lar, the interpretable region corresponded to a regime where the latent neuron activations varied
near-linearly with the known system parameters, showing that the network discovered the key
variables controlling system behavior. In the non-interpretable region, the latent neuron activa-
tions did not yield information regarding system parameters, which we interpreted to mean that
system behavior was physically agnostic to the known system parameters in this regime.

Future work would focus primarily on the interpretation of results when the governing param-
eters are not known beforehand. In particular, it is not immediately clear how to interpret the
latent neuron activations when one does not know what physical parameters one seeks to interpret. Prior knowledge of the physical system
could potentially be applied to divine the correct interpretation of the activations, but a more methodical and data-driven approach should be
developed. Another important avenue for future work is the analysis of stochastic systems. Presently, our analysis has focused on purely deter-
ministic systems, and the ability to extract and interpret system parameters in stochastic problems would be beneficial in a variety of subfields in
physics.
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7 Contributions
WTC developed the chemistry SciNet application. DMK developed a thermodynamics SciNet application (discussed in the proposal and mile-
stone) and contributed to the dataset generation for the chemistry application. JRW developed the particle motion SciNet application. All authors
contributed to analysis and report writing.
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