Learning Neural Network Representations
of Aircraft Flight Dynamics

Loren J. Newton
Department of Aeronautics and Astronautics
Stanford University
ljnewton@stanford.edu

Abstract

As aircraft design progresses into increasingly complex dynamics and flight en-
velopes, it is difficult to mathematically capture these complexities with linear
models. To improve on this, nonlinear neural networks are trained here in 2 archi-
tectures: a feedforward network which is then closed in feedback for simulation,
and a recurrent network for explicit time series prediction. While the feedforward
network has been favored in literature due to faster training times, the results
presented here that despite an almost 2-fold increase in training computation time,
the RNN compensates for this with an over 2-fold increase in modeling accuracy.

1 Introduction

A mathematical model of aircraft flight dynamics is an important tool in analysis of flight dynamics.
Aircraft system identification refers to the process of using flight data to characterize a system that
could have produced that data. The end result, then, is a model that may be used to analytically
simulate aircraft behavior, assess handling qualities, and quantify stability. [1] As it becomes available,
additional flight data may be applied to progressively update and improve this model. A wide variety
of mathematical methods fuel the fitting of models in the system identification context. However, the
structure of the model, whether linear or nonlinear, must be fixed beforehand. This report focuses on
selecting the architecture of a neural network for nonlinear aircraft system identification.

2 Background and Previous Work

Traditional aircraft system identification schemes fit a linear model to the data. [2] While this process
includes several benefits such as simplicity and analytical least-squares fitting, it inherently cannot
abstract any nonlinearities in the aircraft dynamics without complex stitching together of different
models linearized about different trim points. [3] Unmodeled nonlinearities may otherwise cause the
models to deviate significantly from the actual aircraft behavior. Instead of linear methods, neural
networks may be used as an architecture to explicitly model nonlinear flight dynamics. The dynamics
of an aircraft may be represented with Fig. 1, a recurrent neural network. [4]

Physically, the state of the aircraft at the next time step (the network output) is a function of the state
at previous time steps (the feedback connection) and any pilot inputs ¢, at the current time step. This
recurrent network models this physical dependency explicitly. The "backpropagation-through-time"
algorithm is an augmented form of backpropagation that has been applied to train recurrent neural
networks. [5] Traditionally however, [6] this model is trained "open-loop;" (Fig. 2) that is, the next
state estimate is simply predicted as a feedforward function of true previous states provided in the

CS230: Deep Learning, Winter 2020, Stanford University, CA. (LaTeX template borrowed from NIPS 2017.)

Selt,t—1,..t —d;]

aft +1]
> e
o[t +1]

alt,t—1,..t —d]
qlt,t—1,..t—d]
o[t,t—1,..t—d]

DELAY BLOCKS [«

Figure 1: A recurrent neural network representation of flight dynamics.

training data. [7] This is less computationally expensive than training the recurrent network outright,
as it does not explicitly account for the feedback relationships between different training outputs.
After training, this feedforward network is then closed with feedback to resemble Fig. 1. As it is now
estimating states at future time steps as a function of its own previous outputs, it is self-sustaining
and now has an infinite prediction horizon.

fi

f2 fm
Selt,t—1,..t —d;]
aft+1]
glt +1]
At +1]
alt,t—1,..t —d]
qlt,t—1,..t —d]

olt,t—1,..t—d]

Figure 2: An open-loop training configuration.

This project seeks to model flight dynamics with both approaches, and assess the tradeoff between
computation time and network accuracy afforded by each method.

3 Dataset

3.1 Data Source: Aircraft Simulation

In a system identification task in a real flight test campaign,the aircraft in question would be flown
through a series of maneuvers designed to excite certain dynamic modes. [8] (The maneuver nature
is very important to system identification, see Appendix A). The data time histories could then
be applied to a system identification algorithm to build a mathematical model from the data. In
lieu of having (typically proprietary) flight test data for this project, a simulation of the Rockwell
Commander 700 aircraft’s longitudinal dynamics was constructed and "flown" in MATLAB Simulink
to produce data for the system identification task. It is simple but nontrivial: a published [9] linear
aircraft model with rate limit and saturation nonlinearities on the input, and a simple gain/delay pilot
model in the feedback control loop. (Fig. 3)

KqL
r

Pitch rate Feedback

Linear Aircraft Model
w/ Elevator Rate Limiting
and Saturation

7] cetaE] I e =
J\\ / f i=Av+Bu »
theta. ref e N = Cx+ Du P
- l\/ Stick Elevator Elevator
Reference Square Wave Pilot Gain Pilot Delay Rate Limit Saluration theta

Input

Figure 3: Block diagram of the Commander 700 nonlinear longitudinal dynamics simulation. The
blue box contains the aircraft dynamics to be modeled with neural networks.

The aircraft state includes the angle of attack «, pitch rate ¢, and pitch angle 6. The single pilot
input commanded the deflection of the elevator control surfaces, d z. This allowed the construction
of a dataset with high-excitation maneuvers typical of a flight test campaign geared towards system
identification. In each data recording, the closed loop system was tasked with tracking a square-
wave reference in the pitch angle. Aircraft state time histories were measured for 980 different
permutations of pilot model gain and lag and pitch reference period and amplitudes. Note that varying
these parameters changes the nature of the pilot command and thus the states realized- however, it
does not change the dynamics of the aircraft itself. The state and input time histories were sampled
from each "flight" at 100 samples per second. Each maneuver was simulated for 24 seconds, giving a
total of 2.4 million total samples.

3.2 Data Pre-Processing

The time history outputs of the simulation needed to be processed into appropriate formats for each
of the network architectures. For the feedforward network, this step packaged each training input as
the state at a specified number of previous time steps and the input at a (potentially different) number
of time steps. This was paired with the state at the appropriate future time step as the training output.
These "state delay" and "input delay" numbers were network hyperparameters to be tuned. For the
RNN, the states and inputs at a certain identical number of time steps comprised each training input.
The training output consisted of the states at a certain number of future time steps. The number of
time steps in the training inputs and outputs were hyperparameters as well. For both cases, 884 (90%)
of the 980 maneuvers were selected at random as the training set; 48 were the development set and
48 went to the test set. The overall training set of about 1.9 million training pairs was shuffled and
used to train each network in minibatches of 1000 samples each. The validation and test data sets
were not shuffled, in order to preserve the time history visualization there.

4 Constructing and Training Networks

Both neural network architectures were implemented in Python using the Tensorflow framework;
network hyperparameters were tuned through manual trial-and-error iteration. The general philosophy
for sizing hyperparameters (such as number of layers, number of neurons, number of delays, etc.)
was to start small and incrementally increase each parameter until no additional test set performance
was seen. The philosophy with regularization constants was to start at zero and gradually increase
them until the early-stopping flag (discussed in section 4.1) was not thrown in the first ten iterations.
Finally, the strategy for tuning the training learning rates was to start high and gradually decrease
until no additional test set performance was seen.

4.1 Learning Algorithm

Conventional backpropagation was applied to train the feedforward network, and backpropagation-
through-time was applied for the RNN; in both cases, the Adam optimizer was used to specify
each weight change. The success of convergence was extremely sensitive to Adam’s learning
rate hyperparameter; a value of = 5 x 10~° was found to provide reliable convergence for the
feedforward network and a value of o = 1 x 10~° worked well for the RNN. The hyperparameters 31,
B2, and € were not changed from their accepted default values of 0.9, 0.999, and 108, respectively.
The cost function was selected to be mean-squared error between the network’s state estimates and
the true states from the training data (augmented by L, regularization terms, as are discussed below).
Early stopping was implemented, at the first observed increase in development set loss.

4.2 Converted Feedforward Network Approach

The feedforward neural network design contained 3 hidden layers with 50, 30, and 30 units respec-
tively. Network inputs were normalized; batch normalization was also implemented in each hidden
layer. The 3 hidden layers contained ReLU activation functions; the output layer, however, had a
linear activation to allow the outputs to take on a full range of values to match the data. To prevent
overfitting, Lo regularization was applied to the weights of the hidden layers with regularization
constant 0.1; inverted dropout was similarly implemented on all 3 hidden layers, with dropout fre-
quencies of 0.2, 0.2, and 0.1 respectively. It was found that adding additional state delays and input

delays beyond a single time step each did not increase the fitting accuracy of the network. As such,
the feedforward network had 4 inputs: the pilot input and the 3 state values at the current time step.
The output was 3-dimensional, matching the state at the next time step.

4.3 Closed-loop Recursive Neural Network Approach

The RNN representation took on a canonical encoder-decoder architecture with LSTM blocks. The
decoder was fixed to have 20 LSTM blocks, equivalent to a 0.2-second prediction horizon. This
was due to the fact that the pilot delay discussed in section 3.1 was simulated at a maximum of 0.2
seconds: if the neural network model replaced the plant in Fig. 3, any errors beyond a 0.2-second
prediction horizon would not be fed back into the modeled pilot reaction and would therefore be
inconsequential. This delay is a conservative estimate, at the higher extreme of most pilot reaction
delay models. [10] After some iteration, 30 encoder LSTM blocks were used for both training and
testing, similar to the feedforward architecture where each output state was dependent upon one input.
Here, a slight dependence on more than one previous input was identified, thus 30 encoder blocks
and not simply 20. The LSTM blocks received Lo regularization with a scaling constant of 0.1. For
each decoder block, the output was fed through a time-distributed dense layer with a linear activation
function (again to match the unbounded training target data).

5 Results, Analysis, and Conclusion

Training loss at each epoch can be seen for both networks in Appendix B. The feedforward network
performed exceptionally well at testing time when operating in open-loop form: being presented with
true data at the current time step and only predicting the state at a single future time step (Fig. 4a).
However, when the feedforward network loop is closed to resemble Fig. 1, the network generally
does not do as good of a job at modeling the system dynamics for longer prediction windows. Fig.
4b illustrates predictions for angle of attack as compared to the aircraft’s actual response.

01 —— Modeled R
10.0 N —— Modeled Angle of Attack 201 A:mealemt:sponse
', '\ Modeled Pitch Rate
- 751 IR \ —— Modeled Pitch Angle —
é | \ —-- Actual Angle of Attack F
= 30 | ’ |\ —-- Actual Pitch Rate T 107
E: i \ ! c
o] —-= Actual Pitch Angle ©
5 2.5 | 1 ®
g ! g 1 i
S oo ! = ! !
2 A g | |
o =] |
T 251 z ¢ | |
& s _19 " i
i 3 104
u —5.0 g
T <
@
—7.51 {3
\/ —20
\
-1001 | : : : : T T T r r T ;
0 200 200 600 800 1000 0 200 400 600 800 1000 1200
Sample Number sample Number

(a) Evaluating the feedforward network on feedforward (b) Evaluating the feedforward network in closed-loop
testing pairs. operation.

Figure 4: Randomly selected examples of feedforward network modeling performance.

This is perhaps expected. In any long-horizon prediction scheme, model errors propagate and are
summed in each future time step. In linear aircraft system identification, this error accumulation
tends to cause steady drift away from the truth. In a neural network representation however, there is
more potential for strange error propagation behavior due to greater computational graph complexity
and nonlinearities, as seen here where the network seems to represent completely different dynamics.
The RNN, however, demonstrated superior time series modeling as anticipated. Figure 5 illustrates
an example of the RNN’s prediction of 0.2 seconds of future states, based on 0.3 seconds of previous
states and control inputs. Overlaid on this plot is the feedforward network’s prediction of the same
time window, as well as the actual aircraft behavior truth source.

Clearly the RNN is performing better in this example. The error metric for the RNN training scheme-
the MSE between the 0.2-second prediction window and the true aircraft state in that window- was

5
ol ™ Angle of Attack [deg.] .. History
—--- .. Actual Future -""“-‘...___‘-______..-—-—-—-—'___
—— .. Feedforward Prediction | T TTmeal
o .. RNN Prediction ===
S 51— Pitch Angle [deg.] ... History
g === Actual Future
& ... Feedforward Prediction e ———————
JoT] ... RNN Prediction
w —— Pitch Rate [deg./sec.] ...History
=== . Actual Future
... Feedforward Prediction mm—T
-15 .. RNN Prediction — e
=20 : : : : : :
=03 -0.2 =01 o0 01 0z

At from current time

Figure 5: Randomly selected example 0.2 second time series prediction, comparing the two networks.

applied to the feedforward network as well for comparison. For each time step in the testing data
(the data from 48 flights concatenated together), a 0.2-second prediction was made with each of the
networks. The MSE of these errors is illustrated in Fig. 6.

—— Feedforward Network

5 20 Recurrent Network
b=
]
el

£

- 15

[}

by

0]

™

(=]

o 10

un

=

1F)

8

& os
T u

: A ||
= .\, -I!I | l l
0.0 | Sl
0 2000 4000 £000 10000

Sample Number

Figure 6: Comparison of MSE for a 0.2 second prediction for each network.

Note that the errors plotted in Fig. 6 seem to be stratified to roughly constant values every several
hundred samples: each of the strata represent a different flight within the test set. On average, the RNN
returned only 39.5% of the error of the feedforward network. Training the final RNN required 946
seconds on an AWS p2.xlarge GPU. The feedforward network required only 511 seconds, but at this
scale the increase in computational time is certainly worth the superior RNN performance.

Finally, the networks proved insensitive to several other developments. Regularization, even for
constants much larger than were used in training the final networks, seemed to have little effect on the
results. Since the training, development, and testing datasets are all drawn from similar distributions-
the same aircraft flight envelope- perhaps overfitting would be more difficult to achieve without larger
networks. This would explain the marginal impact of regularization. In an attempt to improve the
feedforward network’s closed loop performance, noise was added to the training data to include
some robustness or tolerance to modeling error into the network. When trained on this data, the
feedforward network’s open-loop performance decreased; its closed-loop performance did not change
in having large and unpredictable errors. The RNN, when trained on this data, did not experience any
appreciable closed-loop performance changes either. Regardless, favorable results were achieved
with the RNN and this architecture is recommended for future, aircraft system identification work: an
improved nonlinear tool for modeling aircraft flight dynamics.

Contributions

Loren Newton is the sole author of this report and all of the work described herein.

References

[1] Klein, V., and Morelli, E. A., “Introduction,” Aircraft System Identification: Theory and Practice, AIAA, 1-8.

[2] Klein, V., "Estimation of Aircraft Aerodynamic Parameters from Flight Data," Progress in Aerospace
Sciences, Vol. 26, No. 1, 1989, pp. 1-77.

[3] Berger, T., Tischler, M. B., Hagerott, S. G., Cotting, M. C., and Gray, W. R., "Identification of a Full-Envelope
Learjet-25 Simulation Model Using a Stitching Architecture," Journal of Guidance, Control, and Dynamics,
Vol. 43, No. 11, 2020, pp. 2091-2111.

[4] Hagan, M. T., Demuth, H. B., Beale M. H., De Jesus, O., “Dynamic Networks,” Neural Network Design,
Oklahoma State University, 520-573.

[5] De Jesus, O. ND Hagan, M. T., “Backpropagation Through Time for a General Class of Recurrent Neural
Network,” IJCNN’01. International Joint Conference on Neural Networks Proceedings, IEEE, Washington,
D. C., 2001, 2638-2643.

[6] Ng, B. C., Darus, 1. Z. M., Jamaluddin, H., and Kamar, H. M., “Dynamic Modeling of an Automotive
Variable Speed Air Conditioning System Using Nonlinear Autoregressive Exogenous Neural Networks,”
Applied Thermal Engineering, Vol. 73, No. 1, 2014, pp. 1255-1269.

[7] Hagan, M. T., Demuth, H. B., Beale M. H., De Jesus, O., “Variations on Backpropagation,” Neural Network
Design, Oklahoma State University, 413-467.

[8] Klein, V., and Morelli, E. A., “Experiment Design,” Aircraft System Identification: Theory and Practice,
AIAA, 289-311.

[9] Kirkpatrick, K., May Jr., J., and Valasek, J., "Aircraft System Identification Using Artificial Neural Networks,"
AIAA Report 2013-0878, January 2013.

[10] McRuer, D. T., and Jex, H. R., “A Review of Quasi-Linear Pilot Models,” IEEE Transactions on Human
Factors in Electronics, Vol. HFE-8, No. 3, 1967, pp. 231-249.

[11] Matthews, B., “Flight Data for Tail 683,” NASA DASHIlink, retrieved 19 January 2021.
[12] Matthews, B., “Flight Data for Tail 669,” NASA DASHIlink, retrieved 19 January 2021.

Appendices

A Additional Flight Data Discussion

The dataset initially intended to be used consisted of 8,000 NASA-published flight data recordings
from Boeing 747 airliner operations. [11][12] However, it was found that this data was inadequate
for system identification, as there was not much excitation in each data time history. For an airliner
flight, there are generally few high-amplitude changes in aircraft attitude in the interest of a smooth
flight; most of the flight is steady state. This reduced the usefulness of the vast majority of the data
since the aircraft is not excited for long periods: an important lesson to be kept in mind in aircraft
system identification.

B Training Histories

=
=]
-
=]

—— Training Loss
Validation Loss

—— Training Loss
Validation Loss

=]
-
=2}

=
S

Loss: MSE with Regularization
Y

Loss: MSE with Regularization

10
0
D 320 40 & 8 100 120 140 0 3 a 5 B 10
Iteration Number Iteration Number
(a) Feedforward network training history. (b) RNN training history.

Figure 7: Loss at each training epoch for each network.

	Introduction
	Background and Previous Work
	Dataset
	Data Source: Aircraft Simulation
	Data Pre-Processing

	Constructing and Training Networks
	Learning Algorithm
	Converted Feedforward Network Approach
	Closed-loop Recursive Neural Network Approach

	Results, Analysis, and Conclusion
	Additional Flight Data Discussion
	Training Histories

