

1

Abstract

Signature recognition is an important technique,

especially in financial and legal contexts, to prevent fraud
and verify an individual’s identity. Applying convolutional
neural networks (CNNs) to the signature recognition
problem has recently shown very promising results. Our
project aims to implement an existing CNN (LS2Net from
Çalik et al.) and iterate on this approach by adjusting
aspects of the network. We used 2,160 signatures from the
GPDS Synthetic Offline Signature dataset in our approach.
When identifying whether a signature was genuine or
forgery, we achieved accuracies of ~99% and 54% in the
training and test sets, respectively. These results show
overfitting is a challenge of our model and therefore
explored techniques to reduce overfitting and ultimately
found only regularization improved the performance.

1. Introduction
Handwritten signatures have an important role in society

today. Signatures are a common and widely accepted
method to authenticate an individual’s identity and to bind
an individual to the contents in a document. They are used
in many different settings but have prevalence in financial
and legal contexts. Signature fraud, such as forging
someone’s signature on a check, is an issue today. Signature
recognition is important to prevent fraud and verify
someone’s identity.

There are two main signature recognition methods:
online / dynamic (electronic system with pressure sensitive
pen or similar device to record dynamic information) and
offline / static (scanned document consisting of 2D pixel
data)[1]. Though online signature recognition can provide
more verification information, they are harder to implement
and therefore offline signatures are a more prevalent form
of verification. Given the scale and importance of offline
signatures, we decided to focus on the offline signature
verification method.

With the advancements in image recognition,
convolutional neural networks (CNN) have been applied to
improve existing signature recognition methods and appear
to be the best approach. In this work, we implement an
existing and promising CNN model for signature
recognition and explore modifications to this model.

2. Related work
Even with the recent research and algorithm

development for signature recognition, there is no one
standard for performance evaluation. In addition,
performance is still lacking for large-scale signature
datasets [1]. When evaluating the existing literature, we
found there are many examples of different approaches to
signature recognition, including: Hidden Markov Models
[2], Support Vector Machines [3], Neural Networks [1,4],
and other machine learning models. A significant amount
of the work to-date has depended on feature extraction and
only recently has feature learning been used. Çalik et al. [1]
and Poddar et. al. [4] are two recent works (within the last
2 years) where feature learning has been implemented for
signature recognition.

The first published use of CNNs for signature
recognition was by Khalajzadeh et al. [5] in 2012 where
CNN was developed for Persian Signature Recognition.
Since then, several additional examples of using CNNs for
signature recognition have been published with Çalik et al.
and Poddar et. al. being two promising examples. Both
papers focused on offline signature recognition. Poddar et.
al. [4] obtained 90-94% accuracy for signature recognition
when using a dataset comprising of 1320 pictures, while
Çalik et al. [1] achieved 96.91% accuracy score but used a
much larger dataset (closer to 200k images with 4k unique
signers).

Though the results from both of these papers are
impressive in the field, we decided to focus on Calik et. al.
for our project due to the clarity and detail of their approach.
In this paper, we take the existing CNN approach developed
by Çalik et al. [1] and iterate on it by testing additional
features (e.g., hyperparameters, CNN layers).

3. Dataset and Features
In our work we have focused on using one main dataset

- GPDS Synthetic Offline Signature dataset [6], the same
dataset used by Çalik et al. This dataset contains 4,000
synthetic individuals with 24 genuine signatures for each
individual and 30 forgeries of his/her signature, for a total
of 54 images associated with each individual. See example
signature from dataset in Figure 1 and corresponding
forgery in Figure 2. This example also shows the similarity
between real signatures and forgeries highlighting the

Offline Signature Recognition with Convolutional Neural Networks

Diego Kaulen
dkaulen@stanford.edu

Kaitlyn Baab
kbaab@stanford.edu

2

difficulty to distinguish between the two. These signatures
were generated with different pens (e.g., pen thickness) and
have different pixel sizes. The signature files are in “jpg”
format and have a resolution of 600 dpi. Given these
differences across signatures, we must apply pre-processing
to images so they can be appropriate inputs to the CNN
model.

Figure 1. Example genuine signature from GPDS

Synthetic Offline Signature dataset.

Figure 2. Example of forgery signature from GPDS

Synthetic Offline Signature dataset

Due to memory limitations, we were not able to use

entire dataset and instead our work focused on signatures
from 40 individuals, with 24 genuine signatures for each

individual and 30 forgeries of his/her signature. This
resulted in a total dataset of size of 2,160 images (54x40).
The dataset was then randomized and split 75% for training
and 25% for testing.

4. Methods
We based our model on the work by Çalik et al. [1], in

which they propose a new convolutional neural network
(CNN) structure named Large-Scale Signature Network
(LS2Net). The main structure is composed of sequential
blocks of 2D Convolutional layers, Batch Normalization,
ReLU Activations and Max Pooling. It is preceded by a Pre-
Processing block and succeeded by a Fully Connected
Layer and a Softmax Score set of neurons.

We implemented a smaller version of LS2Net and
explored several modifications detailed in the following
subsections. The general structure of the model we
developed is depicted in Figure 3.

4.1. Pre-processing

Instead of following the comprehensive pre-processing
described in [1] (Otsu Thresholding, Image Opening, Crop
and Skeletonization and Dilating and Square Reshaping),
we standardized all images to the same size (288 x 720).
We arrived at this image size as it provided a good balance:
it was not either too big to trigger memory errors, or too
small to prevent the algorithm to capture the details in each
of the signatures. The aspect ratio (2:5) is an approximate
average of the aspect ratios of each of the 2,160 images we

Figure 3. Signature recognition system. Layers of network and volume dimensions
noted in diagram.

3

processed. This resulted in some of the signatures being
slightly misshapen as a result of the pre-processing but still
found the pre-processing sufficient for our purposes.

This change in our approach significantly impacted the
performance of our algorithm. In the previous version, we
were padding all images to make them the same size. As
signatures from the same person had similar sizes, the
algorithm could rely on the size of the signature to
effectively detect whom the signature was from. However,
this is not the way in which the algorithm should work: Real
applications would demand users to sign in a clearly
delimited space, in which all signatures would be
approximately the same size.

4.2. Network Architecture

Compared with the approach taken by Çalik et al. [1], a
smaller number of channels in each of the Conv2D layers
was used. The original LS2Net uses 1, 128, 128, 256, 256,
512, 512 and 4096 channels in each layer, while our
algorithm uses only 1, 16, 16, 32, 32, 64, 64 and 512,
respectively. See Table 1 for parameter information. We
ultimately decided to not increase the size of the network to
more closely resemble LS2Net due to the presence of
overfitting (see loss function for more details).
Furthermore, we did not include a Batch Normalization step
between each Conv2D layer and the corresponding
activation layer as the inclusion of this layer only resulted
in a decreasing performance of the algorithm.

Even though Çalik et al. [1] use a LeakyReLU activation
function for hidden layers, we chose the simpler ReLU
activation function.

Table 1. Parameter information for final network. h, w,

of channels in, # of channels out p: padding size s: stride
size

Input: 288 x 720 x 1
conv 5, 5, 1, 16 p:same s:2
maxpool 2, 2 p:1 s:2
conv 3, 3, 16, 32 p:same s:2
conv 3, 3, 32, 32 p:same s:1
maxpool 3,3 p:1 s:2
conv 3, 3, 32, 64 p:same s:2
conv 3, 3, 64, 64 p:same s:1
maxpool 3, 3 p:1 s:2
conv 7, 7, 64, 512 p:same s:1
dense 30720
label 41, activation: softmax

4.2.1 Class Scoring

Softmax is the final layer of the neural network. This
layer computes the class score or ‘y’ vector which will

then be fed into loss function or outputted during testing.
In our model the ‘y’ vector is a one hot 1 x 41 vector.
There will be a ‘1’ in one of the first 40 positions if the
signature corresponds to one of the 40 real signatures or
there will be a ‘1’ in the 41st position if the signature
corresponds to any of the forgeries.

4.2.2 Loss function

Both the original LS2Net algorithm and the simplified
version presented in this paper use a cross entropy loss
based on the softmax activation function. One change we
made to the loss function was the addition of a L2-
regularization term to address overfitting. When the L2-
regularization was added the test set accuracy increased
suggesting this addition does in fact decrease overfitting
and improve the algorithm. However, the addition of this
L2-regularization component did not eliminate overfitting
completely, as will be discussed in the results section of this
report.

5. Experiments/Results/Discussion
After trialing many different hyperparameters, we

selected the hyperparameters listed in Table 2 for our final
algorithm since they led to the best performance.

Table 2. Hyperparameters for final algorithm.

Hyperparameter list
Learning rate 3 x 10-4
Minibatch size 5
Weight initialization Truncated Normal (σ = 0.1)
Optimizer Adam
Number of epochs 51
Regularization factor (λ) 0.0011

With these hyperparameters, the algorithm achieved

accuracies of ~99% and 54% in the training and test sets,
respectively. The cross-entropy loss showed a generally
decreasing pattern when plotted against the epoch number,
as depicted in Figure 4. The evolution is not monotonously
decreasing, as mini batches were used to make the
convergence faster.

From our work, we have an operating convolutional
network that can successfully recognize signatures from 40
different individuals in 54% of the cases. Although the
accuracy is not satisfactory for a real application, we
attained a result that is significantly better than a random
draw (which would have an accuracy of 2.5%). Based on
these results, we consider our model to have learned a fair
amount from the data provided.

The low accuracy obtained in the training set relative to
that of the test set is an evidence of overfitting. This result
motivated us to try a few alternatives to reduce the gap
between accuracies of training and test sets. These

4

measures include:
� Optimizing the regularization term in the loss

function, which did help to slightly improve the
accuracy of the algorithm. We reached a point,
however, where any increase of the hyperparameter
lambda led to lower training and test set accuracies,
and a decrease of it led to an increase in the gap
between both accuracies.

� Modifying the size of the network. Increasing the size
of the network by expanding the number of neurons
in the hidden layers only increased overfitting. On
the other hand, decreasing the number of neurons in
hidden layers did reduce overfitting, but at the cost
of reducing the accuracy of the whole algorithm.
We then chose to maintain the network structure.

� Stopping early. We also thought of stopping the
training earlier (by epoch ~25, for example), to try
to prevent the model from overfitting. However,
this did not have the desired effect and the accuracy
of both the training and test sets decreased when
attempting this.

Figure 4. Final results of algorithm.

6. Conclusions
In this work, we built an operational convolutional

network similar to the network developed by Çalik et al.
with the following main modifications: smaller network,
simpler pre-processing step, removed Batch Normalization,
ReLU vs LeakyReLU activation function. Our algorithm
achieved accuracies of ~99% and 54% in the training and
test sets, respectively, when using a 75-25 split on the 2,160
images. These results are consistent with overfitting and
therefore we explored regularization, modifying network
size, and stropping early to improve the model. Of these
approaches we found only regularization helped reduce
overfitting without compromising accuracy of the whole

algorithm. Although the testing accuracy is not satisfactory
for real signature recognition application, we consider our
model to have learned a fair amount from the data provided
and performs significantly better than a random draw.

As a future work, a further exploration of the overfitting
challenge identified would be key to improving the training
accuracy of the CNN network. Additionally, additional
modifications to the algorithm such as adding Batch
Normalization or additional pre-processing steps could be
explored, to investigate the impact on the model
performance. Finally, memory limitations should be
addressed to incorporate more training data to the model.

7. Contributions
Our team consisted of two individuals, Diego Kaulen and

Kaitlyn Baab. Both of us worked together to determine
project topic and overall project approach. We also
collaborated very closely on code implementation. When
we found it was more efficient to break up parts of the
project, Kaitlyn focused on paper writing while Diego
focused on implementing edits to code. This phase
consisted of frequent back-and-forth conversation to make
sure we were aligned on the approach. Overall, we worked
very closely together for the entirety of the project.

References

[1] N. Çalik, O. C. Kurban, A. R. Yilmaz, T. Yildirim, and L.

Durak Ata, “Large-scale offline signature recognition via
deep neural networks and feature embedding,”
Neurocomputing, vol. 359, pp. 1–14, Sep. 2019, doi:
10.1016/j.neucom.2019.03.027.

[2] J. Fierrez, J. Ortega-Garcia, D. Ramos, and J. Gonzalez-
Rodriguez, “HMM-based on-line signature verification:
Feature extraction and signature modeling,” Pattern
Recognition Letters, vol. 28, no. 16, pp. 2325–2334, Dec.
2007, doi: 10.1016/j.patrec.2007.07.012.

[3] L. Nanni and A. Lumini, “Advanced methods for two-class
problem formulation for on-line signature verification,”
Neurocomputing, vol. 69, no. 7–9, pp. 854–857, Mar. 2006,
doi: 10.1016/j.neucom.2005.08.007.

[4] J. Poddar, V. Parikh, and S. K. Bharti, “Offline Signature
Recognition and Forgery Detection using Deep Learning,”
Procedia Computer Science, vol. 170, pp. 610–617, 2020,
doi: 10.1016/j.procs.2020.03.133.

[5] H. Khalajzadeh, M. Mansouri, and M. Teshnehlab, Persian
Signature Verification using Convolutional Neural
Networks, in International Journal of Engineering Research
and Technology, vol. 1. ESRSA Publications, 2012.

[6] M.A. Ferrer, J.F. Vargas, A. Morales, A. Ordonez,
Robustness of offline signature verification based on gray
level features, IEEE Trans. Inf. Forens. Secur., vol. 7, no. 3,
pp. 966-977, 2012, doi: 10.1109/TIFS.2012.2190281.

