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Abstract 

 
Signature recognition is an important technique, 

especially in financial and legal contexts, to prevent fraud 
and verify an individual’s identity. Applying convolutional 
neural networks (CNNs) to the signature recognition 
problem has recently shown very promising results. Our 
project aims to implement an existing CNN (LS2Net from 
Çalik et al.) and iterate on this approach by adjusting 
aspects of the network. We used 2,160 signatures from the 
GPDS Synthetic Offline Signature dataset in our approach. 
When identifying whether a signature was genuine or 
forgery, we achieved accuracies of ~99% and 54% in the 
training and test sets, respectively. These results show 
overfitting is a challenge of our model and therefore 
explored techniques to reduce overfitting and ultimately 
found only regularization improved the performance. 

1. Introduction 
Handwritten signatures have an important role in society 

today. Signatures are a common and widely accepted 
method to authenticate an individual’s identity and to bind 
an individual to the contents in a document. They are used 
in many different settings but have prevalence in financial 
and legal contexts. Signature fraud, such as forging 
someone’s signature on a check, is an issue today. Signature 
recognition is important to prevent fraud and verify 
someone’s identity. 

There are two main signature recognition methods: 
online / dynamic (electronic system with pressure sensitive 
pen or similar device to record dynamic information) and 
offline / static (scanned document consisting of 2D pixel 
data)[1]. Though online signature recognition can provide 
more verification information, they are harder to implement 
and therefore offline signatures are a more prevalent form 
of verification. Given the scale and importance of offline 
signatures, we decided to focus on the offline signature 
verification method. 

With the advancements in image recognition, 
convolutional neural networks (CNN) have been applied to 
improve existing signature recognition methods and appear 
to be the best approach. In this work, we implement an 
existing and promising CNN model for signature 
recognition and explore modifications to this model. 

2. Related work 
Even with the recent research and algorithm 

development for signature recognition, there is no one 
standard for performance evaluation. In addition, 
performance is still lacking for large-scale signature 
datasets [1]. When evaluating the existing literature, we 
found there are many examples of different approaches to 
signature recognition, including: Hidden Markov Models 
[2], Support Vector Machines [3], Neural Networks [1,4], 
and other machine learning models. A significant amount 
of the work to-date has depended on feature extraction and 
only recently has feature learning been used. Çalik et al. [1] 
and Poddar et. al. [4] are two recent works (within the last 
2 years) where feature learning has been implemented for 
signature recognition.  

The first published use of CNNs for signature 
recognition was by Khalajzadeh et al. [5] in 2012 where 
CNN was developed for Persian Signature Recognition. 
Since then, several additional examples of using CNNs for 
signature recognition have been published with Çalik et al. 
and Poddar et. al. being two promising examples. Both 
papers focused on offline signature recognition. Poddar et. 
al. [4] obtained 90-94% accuracy for signature recognition 
when using a dataset comprising of 1320 pictures, while 
Çalik et al. [1] achieved 96.91% accuracy score but used a 
much larger dataset (closer to 200k images with 4k unique 
signers).   

Though the results from both of these papers are 
impressive in the field, we decided to focus on Calik et. al. 
for our project due to the clarity and detail of their approach. 
In this paper, we take the existing CNN approach developed 
by Çalik et al. [1] and iterate on it by testing additional 
features (e.g., hyperparameters, CNN layers). 

3. Dataset and Features 
In our work we have focused on using one main dataset 

-  GPDS Synthetic Offline Signature dataset [6], the same 
dataset used by Çalik et al. This dataset contains 4,000 
synthetic individuals with 24 genuine signatures for each 
individual and 30 forgeries of his/her signature, for a total 
of 54 images associated with each individual. See example 
signature from dataset in Figure 1 and corresponding 
forgery in Figure 2. This example also shows the similarity 
between real signatures and forgeries highlighting the 
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difficulty to distinguish between the two. These signatures 
were generated with different pens (e.g., pen thickness) and 
have different pixel sizes. The signature files are in “jpg” 
format and have a resolution of 600 dpi. Given these 
differences across signatures, we must apply pre-processing 
to images so they can be appropriate inputs to the CNN 
model.  

 
Figure 1. Example genuine signature from GPDS 

Synthetic Offline Signature dataset. 

 
 
Figure 2. Example of forgery signature from GPDS 

Synthetic Offline Signature dataset 
 
Due to memory limitations, we were not able to use 

entire dataset and instead our work focused on signatures 
from 40 individuals, with 24 genuine signatures for each 

individual and 30 forgeries of his/her signature. This 
resulted in a total dataset of size of 2,160 images (54x40). 
The dataset was then randomized and split 75% for training 
and 25% for testing. 

4. Methods 
We based our model on the work by Çalik et al. [1], in 

which they propose a new convolutional neural network 
(CNN) structure named Large-Scale Signature Network 
(LS2Net). The main structure is composed of sequential 
blocks of 2D Convolutional layers, Batch Normalization, 
ReLU Activations and Max Pooling. It is preceded by a Pre-
Processing block and succeeded by a Fully Connected 
Layer and a Softmax Score set of neurons. 

We implemented a smaller version of LS2Net and 
explored several modifications detailed in the following 
subsections. The general structure of the model we 
developed is depicted in Figure 3. 

4.1. Pre-processing 

Instead of following the comprehensive pre-processing 
described in [1] (Otsu Thresholding, Image Opening, Crop 
and Skeletonization and Dilating and Square Reshaping), 
we standardized all images to the same size (288 x 720). 
We arrived at this image size as it provided a good balance: 
it was not either too big to trigger memory errors, or too 
small to prevent the algorithm to capture the details in each 
of the signatures. The aspect ratio (2:5) is an approximate 
average of the aspect ratios of each of the 2,160 images we 

Figure 3. Signature recognition system. Layers of network and volume dimensions 
noted in diagram.  
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processed. This resulted in some of the signatures being 
slightly misshapen as a result of the pre-processing but still 
found the pre-processing sufficient for our purposes.  

This change in our approach significantly impacted the 
performance of our algorithm. In the previous version, we 
were padding all images to make them the same size. As 
signatures from the same person had similar sizes, the 
algorithm could rely on the size of the signature to 
effectively detect whom the signature was from. However, 
this is not the way in which the algorithm should work: Real 
applications would demand users to sign in a clearly 
delimited space, in which all signatures would be 
approximately the same size. 

4.2. Network Architecture 

Compared with the approach taken by Çalik et al. [1], a 
smaller number of channels in each of the Conv2D layers 
was used. The original LS2Net uses 1, 128, 128, 256, 256, 
512, 512 and 4096 channels in each layer, while our 
algorithm uses only 1, 16, 16, 32, 32, 64, 64 and 512, 
respectively. See Table 1 for parameter information. We 
ultimately decided to not increase the size of the network to 
more closely resemble LS2Net due to the presence of 
overfitting (see loss function for more details). 
Furthermore, we did not include a Batch Normalization step 
between each Conv2D layer and the corresponding 
activation layer as the inclusion of this layer only resulted 
in a decreasing performance of the algorithm.  

Even though Çalik et al. [1] use a LeakyReLU activation 
function for hidden layers, we chose the simpler ReLU 
activation function. 

 
Table 1. Parameter information for final network. h,  w,  

# of channels in, # of channels out p: padding size s: stride 
size 

Input: 288 x 720 x 1 
conv 5, 5, 1, 16 p:same s:2 
maxpool 2, 2 p:1 s:2 
conv 3, 3, 16, 32 p:same s:2 
conv 3, 3, 32, 32 p:same s:1 
maxpool 3,3 p:1 s:2 
conv 3, 3, 32, 64 p:same s:2 
conv 3, 3, 64, 64 p:same s:1 
maxpool 3, 3 p:1 s:2 
conv 7, 7, 64, 512 p:same s:1 
dense 30720 
label 41,  activation: softmax 
 

4.2.1 Class Scoring 

Softmax is the final layer of the neural network. This 
layer computes the class score or ‘y’ vector which will 

then be fed into loss function or outputted during testing. 
In our model the ‘y’ vector is a one hot 1 x 41 vector. 
There will be a ‘1’ in one of the first 40 positions if the 
signature corresponds to one of the 40 real signatures or 
there will be a ‘1’ in the 41st position if the signature 
corresponds to any of the forgeries. 

4.2.2 Loss function 

Both the original LS2Net algorithm and the simplified 
version presented in this paper use a cross entropy loss 
based on the softmax activation function. One change we 
made to the loss function was the addition of a L2-
regularization term to address overfitting. When the L2-
regularization was added the test set accuracy increased 
suggesting this addition does in fact decrease overfitting 
and improve the algorithm. However, the addition of this 
L2-regularization component did not eliminate overfitting 
completely, as will be discussed in the results section of this 
report.  

5. Experiments/Results/Discussion 
After trialing many different hyperparameters, we 

selected the hyperparameters listed in Table 2 for our final 
algorithm since they led to the best performance. 

 
Table 2. Hyperparameters for final algorithm. 

Hyperparameter list 
Learning rate 3 x 10-4 
Minibatch size 5 
Weight initialization Truncated Normal (σ = 0.1) 
Optimizer Adam 
Number of epochs 51 
Regularization factor (λ) 0.0011 

 
With these hyperparameters, the algorithm achieved 

accuracies of ~99% and 54% in the training and test sets, 
respectively. The cross-entropy loss showed a generally 
decreasing pattern when plotted against the epoch number, 
as depicted in Figure 4. The evolution is not monotonously 
decreasing, as mini batches were used to make the 
convergence faster.   

From our work, we have an operating convolutional 
network that can successfully recognize signatures from 40 
different individuals in 54% of the cases. Although the 
accuracy is not satisfactory for a real application, we 
attained a result that is significantly better than a random 
draw (which would have an accuracy of 2.5%). Based on 
these results, we consider our model to have learned a fair 
amount from the data provided. 

The low accuracy obtained in the training set relative to 
that of the test set is an evidence of overfitting. This result 
motivated us to try a few alternatives to reduce the gap 
between accuracies of training and test sets. These 
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measures include: 
� Optimizing the regularization term in the loss 

function, which did help to slightly improve the 
accuracy of the algorithm. We reached a point, 
however, where any increase of the hyperparameter 
lambda led to lower training and test set accuracies, 
and a decrease of it led to an increase in the gap 
between both accuracies.  

� Modifying the size of the network. Increasing the size 
of the network by expanding the number of neurons 
in the hidden layers only increased overfitting. On 
the other hand, decreasing the number of neurons in 
hidden layers did reduce overfitting, but at the cost 
of reducing the accuracy of the whole algorithm. 
We then chose to maintain the network structure.  

� Stopping early. We also thought of stopping the 
training earlier (by epoch ~25, for example), to try 
to prevent the model from overfitting. However, 
this did not have the desired effect and the accuracy 
of both the training and test sets decreased when 
attempting this.  

 
 

Figure 4. Final results of algorithm. 

6. Conclusions 
In this work, we built an operational convolutional 

network similar to the network developed by Çalik et al. 
with the following main modifications: smaller network, 
simpler pre-processing step, removed Batch Normalization, 
ReLU vs LeakyReLU activation function. Our algorithm 
achieved accuracies of ~99% and 54% in the training and 
test sets, respectively, when using a 75-25 split on the 2,160 
images. These results are consistent with overfitting and 
therefore we explored regularization, modifying network 
size, and stropping early to improve the model. Of these 
approaches we found only regularization helped reduce 
overfitting without compromising accuracy of the whole 

algorithm. Although the testing accuracy is not satisfactory 
for real signature recognition application, we consider our 
model to have learned a fair amount from the data provided 
and performs significantly better than a random draw. 

As a future work, a further exploration of the overfitting 
challenge identified would be key to improving the training 
accuracy of the CNN network. Additionally, additional 
modifications to the algorithm such as adding Batch 
Normalization or additional pre-processing steps could be 
explored, to investigate the impact on the model 
performance. Finally, memory limitations should be 
addressed to incorporate more training data to the model.  

7. Contributions 
Our team consisted of two individuals, Diego Kaulen and 

Kaitlyn Baab. Both of us worked together to determine 
project topic and overall project approach. We also 
collaborated very closely on code implementation. When 
we found it was more efficient to break up parts of the 
project, Kaitlyn focused on paper writing while Diego 
focused on implementing edits to code. This phase 
consisted of frequent back-and-forth conversation to make 
sure we were aligned on the approach. Overall, we worked 
very closely together for the entirety of the project. 
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