Bitcoin High-Frequency Trend Prediction
with Convolutional and Recurrent Neural
Networks

Z1HAN QIANG

Stanford University
zqiang@stanford.edu

JINGYU SHEN

Stanford University
jingyu.shen@stanford.edu

March 17, 2021

Abstract

Cryptocurrencies, with Bitcoins created in 2009 as the forerunner, can be exchanged, with the state-of-the-art block-chain technology
providing protections for transactions. In this work, the deep learning techniques of convolutional neural networks (CNN) and long
short-term memory (LSTM) networks are used as classification algorithms to perform one-step ahead high-frequency trend predictions
of Bitcoin prices using minute level technical indicators. A hybrid CNN-LSTM model has been developed after many rounds of
hyperparameter tuning. Our work has shown promising results that the developed model can, to a certain degree, extract useful signals
from technical indicators and generate trading strategies that outperform the benchmark strategy of passively holding Bitcoins in terms
of net asset value and Sharpe ratio in the backtesting period. A future plan of applying rolling window cross validation is also proposed.

I. INTRODUCTION

In recent years, cryptocurrencies, especially Bitcoins, have
been gathering widespread public interest since its price
spike in 2017 to $19,783 USD and a recent surge to around
$40,000 USD in January 2021. Due to the extremely volatile
and manipulation-prone nature, there have been ongoing
controversies around whether the cryptocurrency mar-
ket is a good place for investment. In this project, we
aim to forecast the minute level price changes of Bitcoins
traded on Binance using convolutional and recurrent neu-
ral networks to generate investment strategies that can
outperform the traditional strategy of passively holding
assets. The inputs to our algorithms are the minute level
open, close, high, and low prices, all represented as ex-
change rates with $USD, as well as the volume traded at
Binance Bitcoin exchange and the overall volume traded in
the market. Our algorithm will then predict the direction
of Bitcoin price change the next minute using the trained
algorithms.

II. LITERATURE REVIEW

Deep learning algorithms have been applied and tested
in various research, some of which have shown accurate
yet robust results in Bitcoin’s high-frequency trend predic-
tion. [Ji, Kim, & Im)| have tried deep learning algorithms
of DNN, LSTM, CNN, and RNN to predict Bitcoin re-
turns. The accuracy of these methods is around 50% to
60% and it is concluded that no methods would signifi-

cantly outperform others. In another research, by using 18
technical indicators calculated from minute-level Bitcoin
prices, |Alonso-Monsalve, Suarez-Cetrulo, Cervantes, &
Quintana) have used CNN, hybrid CNN-LSTM network,
MLP, and RBF neural network to predict the price changes
of the six most popular cryptocurrencies - Bitcoin, Dash,
Ether, Litecoin, Monero and Ripple, and have concluded
that the hybrid CNN-LSTM network performs the best,
with test accuracies reaching as high as 80% and 74% in
predicting price changes of Monero and Dash respectively.
Bergmeir & Benitez, has tested the method of blocked
cross-validation on one-step ahead time series forecasting,
which we call rolling windows cross-validation in this re-
port, to make use of the most recent information for each
round of validation process, and has yielded robust error
estimates. We plan to re-calibrate and improve the CNN
and CNN-LSTM hybrid model by using additional fea-
tures and including the most recent roller-coaster Bitcoin
price fluctuations, which may provide more meaningful
implications going forward.

III. DATASET AND FEATURES

The dollar-denominated minute level Bitcoin prices and
volumes from July 8, 2020 to Feb 11, 2021 are collected
with a total of 313,327 data points, and 313,327 labels
of price change are generated, where 0 and 1 denote a
decrease and an increase in price respectively. The entire
dataset is split into three parts, where the first 80% of the
data are used as the training set, and the rest are equally

mailto:zqiang@stanford.edu
mailto:jingyu.shen@stanford.edu

Bitcoin High-Frequency Trend Prediction with Convolutional and Recurrent Neural Networks

divided into dev and test sets. The following table shows
the summary and balance of each dataset with respect to
the labels.

Labels | Samples | Percentages
Train 0 125,444 49.18%
1 129,621 50.82%
Dev 0 14,330 50.55%
1 14,017 49.45%
Test 0 14,899 49.77%
1 15,016 50.23%

Table 1: Dataset Summary

Table [I| has shown that the labelling classes of three
datasets are well balanced, with both labels occupying 50%
in each set, and do not have class imbalance issues. The
inputs are then used to calculate 30 technical indicators,
similar to the ones in[Alonso-Monsalve et al with some
additions, as shown in Table[2}

Indicator Formula
MOM(I’I, t) Ct Ct n
MOM;yet(n,t) log(ct n)
n—1 i
SMAer(n,) bttty
WMAret(n t)):?;01 (n_i)Xlog(thi/Ct—ifl)
4 n
RSI(n,t) 100 — (%)
"down
SK(n, t) (7H1Cg’h_foffﬁun)
SDio(n,t) Y0 SK(n, t— i)
LWR(n,) (i)
1/3x (Highu+Low,;+C;)—SMA(n,t)
CCI(n,t) 0 015 MD(n.0) e
MACD(t) EWMA . (t) — EWMAﬁlose(t)
ADOSCpginance(t) EWMAS, (1) = EWMAY ()
ADOSC,(t) EWMAé () — EWMAlg ()

n € {5,10,30}; C;: close price at time t; 11p, 145, averages of
n-day up and down closes; High;,, Low,: highest and lowest
price from last n periods; The subscript of EWMA denotes data
and the superscript denotes the lookback period.

Table 2: Technical Indicators

The indicators of simple moving average and weighted
moving average in the original paper are changed to be
SMA and WMA of Bitcoin returns to ensure stationarity.
The calculation of technical indicators can be viewed as
a transfer learning process that extracts useful features
of price dynamics, including momentum, relationships
among recent price levels, overbought and oversold condi-
tions, and the overall accumulation and distribution. All
the above indicators in the training set are normalized,
and the corresponding parameters of mean and variance

are used to normalize the indicators in the validation and
test sets.

IV. MEeTHODS

The model implemented in this paper includes two major
components: CNN and LSTM.

i. Convolutional Neural Networks

The architecture of convolutional neural networks (CNN)
is used in our project to utilize its ability to exploit relation-
ships among adjacent data and to speed up the processing
of the massive amount of high frequency data.

To implement CNN, our minute level data points are
first converted to a set of 2 dimensional "images" shaded
in blue as shown in Figure (I} with the 2 dimensions being
time lags (height) and technical indicators (width). Every
input image covers all of the 30 indicators and a certain
number of time lags for a given time stamp in our data.
The number of technical indicators are fixed throughout
the project whereas the number of time lags are fine tuned
as hyperparameters (the number of lags is shown as 15 in
Figure [T| and [2] for the purpose of illustration). The direc-
tion of the next minute price change, shaded in orange, is
used as the label of a specific input "image".

Tl
T3

T15

T16 Ti611 Ti612 T1613 - T16129 T16130 [L16

T17 Ti711 Ti712 T1713 Ti7129 Ti7130 L17
1 12 13 129 130 Label

T1 T12 T1I3 - T1129 T1I30 L1

T2 L2

T3 L3

T15 L15
T16 L16
T17 Ti711 Ti712 T1713 Ti7129 Ti7130 (A7

Figure 1: Two Examples of Data Points

During the construction of our convolutional neural
network algorithm, we choose to use 1-dimensional filters
that encode information of time series of a given indicator
(vertical filters) or of a set of indicators at a given time
(horizontal filters) as in Figure [2} The filter sizes are also
tuned as hyperparameters throughout the course of the
project. 1-D filters are been applied instead of 2-D filters,
which are widely used in computer vision, because as a
2-D filter slides through our input "images", the nature of
the information that a given filter encodes is constantly
changing for each iteration (i.e. the filter looks at different
indicators at different time stamps).

Bitcoin High-Frequency Trend Prediction with Convolutional and Recurrent Neural Networks

1@15x30 1@1 5xsoE

Figure 2: 1-D Filters

After tuning hyperparameters, we achieved the optimal
structure of our CNN model shown below in Figure
Batch normalization layers are used in each convolutoinal
layer to speed up training. Pooling layers are not used
in our CNN architecture because our input ‘images’ are
relatively small compared to the more commonly seen
RGB images which often have significantly larger sizes,
and the use of pooling layers can summarize the features
too early.

‘Input Image:
(40, 30)

' Output Image: |

(28,10)

|

LSTM Layers

Figure 3: CNN Layers

The optimal lag for the input ‘images’ is 40, and so the
CNN layers take the input of size 40 by 30 and return the
output of size 28 by 10 after going through the filters. The
output ‘images’ are inputted into the LSTM networks as
described in Section [il

ii. Long Short-Term Memory Networks

The long short-term memory (LSTM) networks are used in
our project to further exploit the sequential relationships
among Bitcoin data, which, in our case, are time series
data of technical indicators. It is an ideal tool for time-
series forecasting given its capability of dealing with the
entire sequence of data. The two deep LSTM layers are
added as additional layers to our already established CNN

architecture, and will take the output of the CNN layers
as inputs. The optimal architecture of our LSTM network
is illustrated in Figure

Our LSTM architecture consists of a 2-layer deep ver-
sion of LSTM. The output units of each layer is 100. It
means that the input 28 timestep by 10 features matrix
will been fed into this model and transformed into 28 1 by
100 vectors first and eventually into one 1 by 100 vector.
This layer is then followed by a dense layer to generate
the label output with sigmoid activation function, which
takes on the value of 0 or 1. Dropout factors are added
in the recurrent layers as well as in the dense layer as
regularization to our architecture.

e

(OOOOOOO0 eeseseeesOOOO)

@

oo e o e o o (G

A A A

LSTM(100 LSTM(100) ° LSTM(100)
R Y,

-
CNN Output:
(28, 10)

Figure 4: LSTM Layers

iii. Temporal Cross Validation

As our project is dealing with a time series data of Bit-
coins that do not have a well-defined nature, unlike other
popular asset classes such as stocks, bonds, and futures
whose values are based on the corresponding companies,
governments, and the underlying assets respectively, the
distribution of Bitcoin’s historical data are constantly ex-
periencing imperceptible shifts. Therefore, the methods
of temporal cross validation is a preferable choice to vali-
date our models by keeping up-to-date with the market
conditions.

One method of rolling windows cross validation is
shown in Figure 5| below. For this method, there are a
number of rolling windows (5 in the figure for illustra-
tion), with each consisting of a training and validation set
and the size of each set is kept the same for each rolling
window. In each window, a training-validation process is
performed, after which the window is moved in time by
the amount of data points in the validation set, so that the

Bitcoin High-Frequency Trend Prediction with Convolutional and Recurrent Neural Networks

next training set gets updated by adding the previous val-
idation set and discarding the data points that are further
in the past.

uoEr W N R

>

Time Horizon

- Training Sets
|:| Validation Sets

Figure 5: Rolling Windows Cross Validation

However, the mentioned validation method has high
computational cost and is not feasible for the scope of this
project. Instead, we choose to select K independent blocks
of data, as shown in Figure |§|below, and break them down
into training and validation sets to evaluate the algorithm’s
performance throughout different historical periods. The
data used in the training-validation can shrink for large
K’s, which may solve the distributional shift. For the
evaluation of both methods, we use the average of our
algorithm’s performances on each validation sets.

1

2
3

>

Time Horizon

Validation Sets

- Training Sets
Figure 6: Independent Cross Validation

V. EXPERIMENTS

The hyperparameters of the aforementioned model have
been fine tuned in great efforts. Note that the hyperpa-
rameters of CNN layers are tuned together with the LSTM
layers. We start off the tuning process by trying to overfit
the training set, and then add dropout and regularization
to achieve the balance between bias and variance.

In our CNN architecture, we experimented the hyperpa-
rameters that affect the complexity of our model - number
of layers, number and size of filters at each layer. The train-
ing loss did not decrease dramatically in the beginning,
and thus we need to tune the above hyperparameters to
increase the model complexity in order to capture more
signals. The number and size of filters remain relatively

unchanged in the tuning process, as one of the literature
implemented similar size and number of filters and have
achieved reasonable results. We make the vertical filter
size smaller than horizontal filter so the LSTM can capture
more time-series signals. The most important hyperpa-
rameters we tuned is the number of layers, where we tried
the number of layers all the way from 4 to 10 and ended
up with 5 horizontal and 4 vertical layers. The reason
why we have one less vertical filter is that, again, we pre-
fer to use LSTM, instead of CNN, to capture time-series
relationship.

The hyperparamters to tune in the LSTM layers are the
output units and number of LSTM layers. We mainly
tuned the output units of LSTM, all the way from 30 to
150 units, and choose to fix the LSTM layers to 2 as the
LSTM layers are typically no more than 3. We ended up
with 100 units to increase the model complexity while
keeping the algorithm computationally feasible.

The hyperparameters tuned in the overall hybrid model
are batch size, epochs and dropout rate. We chose the
batch size from 64 to 256 and the epochs from 80 to 120 for
different cases to ensure convergence while save training
time. We tried dropout factors of 0.2 to 0.4 to add regular-
ization effect, and ended up with 0.2 dropout rate as 0.3
and 0.4 would result in non-converging training loss.

VI. REesurts & DIscuUssiON

We trained the aforementioned model with Adam as the
optimizer, the binary cross-entropy function as the loss
function, and hyperparameters mentioned before. As sug-
gested in the section Temporal Cross Validation, we have
trained the model on K = 1,2,3 for testing purposes. As
this project is intended to generate optimal Bitcoin trading
strategies for investors by capturing signals from historical
data, the metrics of net asset value (NAV) and Sharpe ratio
(SR), which are commonly used in the financial industry,
are used in addition to predictive accuracy. NAV mea-
sures the value of an investor’s asset at the end of the
investment horizon assuming 1 dollar is invested at the
beginning. The results for K = 1 are shown below. Note
that for each case, we trained for 3 times and average the
results to ensure robustness.

Valid | BTC NAV | NAV | BTC SR SR Acc
K=1 1.194 1.613 | 0.003 | 0.0078 | 0.514
Test | BTC NAV | NAV | BTC SR SR Acc
K=1 1.29 1.455 | 0.0052 | 0.0074 | 0.511

Table 3: K = 1 Validation and Test Set Results

We can observe that the valid and test accuracy are just
above the 50% threshold, meaning that our model is not
confident at predicting the next minute return. It is likely

Bitcoin High-Frequency Trend Prediction with Convolutional and Recurrent Neural Networks

to be caused by a large distributional shift between our
training set and validation or test test. The fundamentals
have changed over the period so that the signal we learnt
from training set is not effective in validation set. However,
we can see that the NAV and Sharpe ratio generated by
our model outperforms the passive strategy. Our model
can utilize past signal to generate trading strategies that
can outperform the benchmark.

We then tested with the temporal cross validation. The
results for K = 2 and K = 3 are shown below. Note that
the results are the average over 2 or 3 trials.

BTC NAV | NAV | BTC SR SR Acc
K=2 1.23 1.34 0.013 0.018 | 0.53
K=3 1.10 1.02 | 0.0082 | 0.0008 | 0.507

Table 4: K = 2 and 3 Validation results

We can observe that the accuracy when K = 2 is around
53%, which is much higher than K = 1. When K = 2, both
the training and validation set have been shortened, which
clearly offsets the distributional shift issue. It demon-
strates that the model is relatively good at predicting the
next minute return. Moreover, the NAV and Sharpe ratio
have outperformed the passive investing strategy. The
accuracy and NAV of one trial have been plotted below.

/\/v\/f
0.54 4
ANV
. o
]
053 wadl
=
o
®
E 052
<
051 1 /
N
/f/ — wrain_accuracy
0.50 4 val_accuracy
0 10 20 30 40 50 60 70 80

Epoch

Figure 7: K = 2 Accuracy

Validation

valid_strategy
120 4 bc
115 A
'

110 A
105 A
100 { %

v

] 2000 4000 6000 8000 10000 12000 14000 16000

Figure 8: K = 2 Net Asset Value

From Table [d we can see that our strategy generated

34% return while Bitcoin has increased 23%. The profit
from K = 2 is not as good as K =1 as we are training on
less data which may results in less signals being captured,
however, it is more robust given the higher accuracy with
less distributional shift.

For K = 3, we have observed that the accuracy is 0.507
and the validation loss is even increasing. It means that the
we have learnt noises or overfitted given that the training
set is too short. Moreover, the NAV and Sharpe Ratio
have underperformed the passive investing strategy. It
can be caused by the ineffective trained strategy, and the
validation set may also be too short to realize the strategy.

In general, we have observed the distributional shift
when K = 1. Then, we tried to reduce the training set
by splitting the current dataset into 2 and 3 independent
blocks (K = 2,3). We realized that K = 2 would be a good
balance between the demand of short training set to offset
distributional shift and the demand of long training set to
offset overfitting. As suggested in section 4.3, we should
further test the K = 2 strategy (i.e. the same length of
training and validation) on the rolling basis to test out the
stability of this strategy.

VII. CONCLUSION

In this paper, we have implemented a hybrid deep learn-
ing model that includes CNN and LSTM to predict the
Bitcoin returns and generate investment strategy. 30 tech-
nical indicators have been computed as the features. We
then generated the input images by cropping the dataset
with time lag = 40. Next, we designed a CNN model
that is comprised of 9 layers with 5 horizontal filters to
encode relationships among features and 4 vertical layers
to encode those among time steps. Then, the output image
is fed into a 2 layer LSTM model with 100 units to further
capture the time-series. Finally, a sigmoid dense layer
is added to produce the binary result. Overall, the batch
normalization and dropout layers are also added to ensure
the regularization effect to avoid the overfitting. We first
trained the entire dataset and get only 51% accuracy but a
good NAV and Sharpe ratio, which outperforms passive
investing in Bitcoin. Although it suggests that there is
a distributional shift between train and validation which
causes lower accuracy, signals from the past are captures
to generate an outperforming investment strategy. We
then implemented the temporal cross validation (split),
and achieved 53% accuracy with better NAV and Sharpe
ratio when K = 2. We realized that the shortened training
set resolves the distributional shift issue, but is also suffi-
cient to capture the signals from historical data. For K =
3, the accuracy and NAV is too low as the model learns
only the noise. The next step would be to implement a
rolling temporal CV with the same length of training and
validation data as K = 2 to further test the strategy.

Bitcoin High-Frequency Trend Prediction with Convolutional and Recurrent Neural Networks

VIII. CONTRIBUTIONS

Zihan Qiang and Jingyu Shen constantly and closely col-
laborated with each other. There is no clear line that could
separate the work. In general, they contributed equally to
this work.

IX. APPENDIX

i. Accuracy forK=1

Accuracy

054
052 /’
py -
050 — tl'ﬁlrl_ﬂ(EUI'EE'y'
val_accuracy
o 20 40 60 Bo 100 120

Epoch

Figure 9: K = 1 Valid Accuracy

ii. NAVforK=1

Validation

18 — walid_strategy
btc
16
14
i
i
1z "
10 vy

o 5000 10000 15000 20000 25000

Figure 10: K = 1 Valid NAV

Test

— test_strategy
btc

o 5000 10000 15000 20000 25000 30000

Figure 11: K = 1 Test NAV

iii.

Accuracy

0950

0.925

0900 —

0875

070
0.65

0.60

1050
1025
L]
1000 nl MM
0.97s N "v
!.

Accuracy and NAV for K = 3

= ftrain_accuracy
val_acouracy

o 20 40 (=] Bo 100
Epoch

Figure 12: K = 3 Accuracy

Validation

wvalid_strategy
bt

o 2000 4000 6000 8000 10000

Figure 13: K = 3 NAV

REFERENCES

Alonso-Monsalve, S., Suarez-Cetrulo, A. L., Cervantes, A.,

Quintana, D. (2020). Convolution on neural net-
works for high-frequency trend prediction of cryp-
tocurrency exchange rates using technical indicators.
Expert Systems with Applications, 149, 113250.

Bergmeir, C., Benitez,]. M. (2012). On the

use of cross-validation for time series predictor
evaluation. Information Sciences, 191, 192-213.
Retrieved from https://www.sciencedirect.com/
science/article/pii/S0020025511006773| (Data
Mining for Software Trustworthiness) doi: https://
doi.org/10.1016/j.ins.2011.12.028

Ji, S, Kim, J., Im, H. (2019). A comparative study of bitcoin

price prediction using deep learning. Mathematics,
7(10), 898.

https://www.sciencedirect.com/science/article/pii/S0020025511006773
https://www.sciencedirect.com/science/article/pii/S0020025511006773

	Introduction
	Literature Review
	Dataset and Features
	Methods
	Convolutional Neural Networks
	Long Short-Term Memory Networks
	Temporal Cross Validation

	Experiments
	Results & Discussion
	Conclusion
	Contributions
	Appendix
	Accuracy for K = 1
	NAV for K = 1
	Accuracy and NAV for K = 3

	References

