
 1

OSRSNet: Real-time Object Recognition in

3D MMORPGS
Matt Rickard

Stanford Graduate School of Business

Stanford University

March 16, 2021

Abstract
Virtual worlds are becoming increasingly important as individuals spend

more time online behind virtual avatars. These environments have been

training grounds for deep learning applications like self-driving

algorithms, but there have not been many attempts to apply techniques

from the real world inside dynamic mass multiplayer virtual worlds. We

utilize the state-of-the-art online object recognition deep learning

architecture yolov5 to classify over 800 objects from the mass

multiplayer online game RuneScape. We achieved a mAP (0.5) score of

0.78 after training on 25,000 640x640 in-game screenshots.

1 Introduction

Object recognition models have been developed for all sorts of online tasks

– for example, they are used in applications from self-driving vehicles.

Virtual worlds are becoming increasingly interesting – in terms of breadth

(number of users, world size) and depth (possibility of actions and

impressiveness). They can be training grounds for understanding and

modelling human behavior in a reproducible and scalable manner.

Additionally, games like RuneScape provide a medium fidelity experience

of our world – vaguely human-like avatars, monsters, and items, but

coupled with a tiling grid system and limited movement and actions in the

virtual world.

We propose building a real-time object recognition model for the mass

multiplayer online role-playing game (MMORPG), RuneScape.

2 Related Work

The closest related work is Kim, et al., who applied the YOLO v5 algorithm

to identify 2D sprites in retro video games. They achieved a mAP 0.5 of

0.9635 with a combination of 60,000 images with both real and synthetic

data. However, this problem is constrained to much lower pixel densities

and 2d objects, rather than the 3d virtual world we plan to train our model

in. Additionally, our world contains numerous player characters, which may

 2

look similar, but are different, from in-game NPCs and objects. Finally, we

are looking at a large number of classes, training on 800+ distinct classes.

Deep learning has been applied to building non-player character (NPC) AI

behaviour in MMORPGs. Pfau, et. al found that models of individual game

player behavior could be generated with high accuracy, especially in

creating strategies. Other deep learning applications include bot detection

using LTSM and time windows. Tsikerdekis found that LTSMs were

effective in detecting automated player behavior in MMORPGs. Fujita

found that real world traders, a complicated problem for in-game MMORPG

economies, could be detected with deep learning. For game developers,

Ling found that CNNs could be used to detect rendering issues in video

games in real time.

3 Dataset

We built an automated bot to collect over 25,000 in-game images. We used

a free-to-play (f2p) account, mapping out a walking path that covered nearly

all accessible areas to new players. Since the game is a 3d virtual

environment, we augmented the dataset at collection time by taking multiple

images from different camera pitches and yaws. Since the data was

collected in a live environment, NPCs and game objects are constantly in

motion, with additional noise from unlabelled player characters. Since the

game is java-applet-based, we were able to generate accurate bounding box

labels for over 800 classes of NPCs and game objects through decompiling

the game client and using Java reflection.

A typical batch of labelled data

 3

Image label dimensions across all classes

Image counts per class

4 Methods

We used a YOLO v5 algorithm, which is a recent rewrite of the You Only

Look Once algorithm in pure PyTorch. From the original paper, the

architecture of the network:

5 Experiments/Results/Discussion

5.1 Base Model

We used the yolov5 architecture as an initial baseline model to train upon.

We modified hyperparameters and made simple optimizations – leaving the

overall architecture in place.

We trained 3 separate models to get a baseline – first, with a small subset of

classes, second, with a specific subset of classes, and finally, with all 800+

 4

classes. We experimented with different images sizes and will continue to

tune the other hyperparameters as we go forward.

5.2 Hyper Parameters

For our hyperparameters – we used a batch size of 16, an image size of

640x640, and trained for 300 epochs on our personal hardware (NVIDIA

Titan X GPU, 64gb RAM). We augmented the data with translation, scale,

and horizontal flips. We used default values for momentum and learning

rates, but we plan to experiment with tuning these hyperparameters later.

5.3 Results

We judged our results based on the

mean average precision (mAP) of the

neural network. We can see that there

are many classes for which precision

and recall is both very high, and some

classes that the model had difficulty

with. Since our classes and data were

generated programmatically, we might

need to dig deeper into these classes to

understand if there is a labelling issue, or even a miscategorization by way

of overlapping classes.

Here is the output of result after training for 300 epochs.

 5

6 Online Inference Architecture

Online inference is important for our ultimate application. The ability to do

inference at 30fps would satisfy our use case. To do so, we have an

architecture where we capture the game window with Open Broadcaster

Software (OBS) streaming that to a nginx RTMP gateway, which then

multiplexes the stream to both the python inference server as well as a

separate source for debugging or streaming live to the player.

7 Conclusion

The algorithm performed well enough to serve as a foundation for higher-

order actions in the virtual world. Additionally, we were able to get the

online inference working at a desirable framerate, making the application

useful for using in real-time.

There is considerable work to be done to refine the model and achieve better

results. First, we could collect more data. We collected data with a single

account over the course of a few days, but could horizontally scale the

operation by running more game clients in parallel. Second, we could

experiment with synthetic data combined with real data. This method was

effective for Kim, et. al for 2d sprites, and the strategy might generalize to

3d models.

8 References

Fujita, Atsushi, Hiroshi Itsuki, and Hitoshi Matsubara. "Detecting real money
traders in MMORPG by using trading network." Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment. Vol. 6.
No. 1. 2011.

Kim, Chanha, Jaden Kim, and Joseph C. Osborn. "Synthesizing Retro Game
Screenshot Datasets for Sprite Detection." (2020).

 6

Ling, Carlos, Konrad Tollmar, and Linus Gisslén. "Using Deep Convolutional
Neural Networks to Detect Rendered Glitches in Video Games." Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment.
Vol. 16. No. 1. 2020.

Pfau, Johannes, Jan David Smeddinck, and Rainer Malaka. "Towards deep player
behavior models in mmorpgs." Proceedings of the 2018 Annual Symposium on
Computer-Human Interaction in Play. 2018.

Tsikerdekis, Michail, et al. "Efficient Deep Learning Bot Detection in Games Using
Time Windows and Long Short-Term Memory (LSTM)." IEEE Access 8 (2020):
195763-195771.

	1 Introduction
	2 Related Work
	3 Dataset
	4 Methods
	5 Experiments/Results/Discussion
	5.1 Base Model
	5.2 Hyper Parameters
	5.3 Results

	6 Online Inference Architecture
	7 Conclusion
	8 References

