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Abstract 
Virtual worlds are becoming increasingly important as individuals spend 

more time online behind virtual avatars. These environments have been 

training grounds for deep learning applications like self-driving 

algorithms, but there have not been many attempts to apply techniques 

from the real world inside dynamic mass multiplayer virtual worlds. We 

utilize the state-of-the-art online object recognition deep learning 

architecture yolov5 to classify over 800 objects from the mass 

multiplayer online game RuneScape. We achieved a mAP (0.5) score of 

0.78 after training on 25,000 640x640 in-game screenshots. 

1 Introduction 

Object recognition models have been developed for all sorts of online tasks 

– for example, they are used in applications from self-driving vehicles. 

Virtual worlds are becoming increasingly interesting – in terms of breadth 

(number of users, world size) and depth (possibility of actions and 

impressiveness). They can be training grounds for understanding and 

modelling human behavior in a reproducible and scalable manner. 

Additionally, games like RuneScape provide a medium fidelity experience 

of our world – vaguely human-like avatars, monsters, and items, but 

coupled with a tiling grid system and limited movement and actions in the 

virtual world.  

 

We propose building a real-time object recognition model for the mass 

multiplayer online role-playing game (MMORPG), RuneScape. 

2 Related Work 

The closest related work is Kim, et al., who applied the YOLO v5 algorithm 

to identify 2D sprites in retro video games. They achieved a mAP 0.5 of 

0.9635 with a combination of 60,000 images with both real and synthetic 

data. However, this problem is constrained to much lower pixel densities 

and 2d objects, rather than the 3d virtual world we plan to train our model 

in. Additionally, our world contains numerous player characters, which may 
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look similar, but are different, from in-game NPCs and objects. Finally, we 

are looking at a large number of classes, training on 800+ distinct classes.   

 

Deep learning has been applied to building non-player character (NPC) AI 

behaviour in MMORPGs. Pfau, et. al found that models of individual game 

player behavior could be generated with high accuracy, especially in 

creating strategies. Other deep learning applications include bot detection 

using LTSM and time windows. Tsikerdekis found that LTSMs were 

effective in detecting automated player behavior in MMORPGs. Fujita 

found that real world traders, a complicated problem for in-game MMORPG 

economies, could be detected with deep learning. For game developers, 

Ling found that CNNs could be used to detect rendering issues in video 

games in real time.  

 

3 Dataset 

We built an automated bot to collect over 25,000 in-game images. We used 

a free-to-play (f2p) account, mapping out a walking path that covered nearly 

all accessible areas to new players. Since the game is a 3d virtual 

environment, we augmented the dataset at collection time by taking multiple 

images from different camera pitches and yaws. Since the data was 

collected in a live environment, NPCs and game objects are constantly in 

motion, with additional noise from unlabelled player characters. Since the 

game is java-applet-based, we were able to generate accurate bounding box 

labels for over 800 classes of NPCs and game objects through decompiling 

the game client and using Java reflection. 

 
A typical batch of labelled data 
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Image label dimensions across all classes 

 

 

 
Image counts per class 

4 Methods 

We used a YOLO v5 algorithm, which is a recent rewrite of the You Only 

Look Once algorithm in pure PyTorch. From the original paper, the 

architecture of the network: 

 

5  Experiments/Results/Discussion 

5.1 Base Model 

We used the yolov5 architecture as an initial baseline model to train upon. 

We modified hyperparameters and made simple optimizations – leaving the 

overall architecture in place.  

 

We trained 3 separate models to get a baseline – first, with a small subset of 

classes, second, with a specific subset of classes, and finally, with all 800+ 
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classes. We experimented with different images sizes and will continue to 

tune the other hyperparameters as we go forward. 

5.2 Hyper Parameters 

For our hyperparameters – we used a batch size of 16, an image size of 

640x640, and trained for 300 epochs on our personal hardware (NVIDIA 

Titan X GPU, 64gb RAM). We augmented the data with translation, scale, 

and horizontal flips. We used default values for momentum and learning 

rates, but we plan to experiment with tuning these hyperparameters later. 

5.3 Results 

We judged our results based on the 

mean average precision (mAP) of the 

neural network. We can see that there 

are many classes for which precision 

and recall is both very high, and some 

classes that the model had difficulty 

with. Since our classes and data were 

generated programmatically, we might 

need to dig deeper into these classes to 

understand if there is a labelling issue, or even a miscategorization by way 

of overlapping classes. 

 

Here is the output of result after training for 300 epochs.  
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6 Online Inference Architecture 

Online inference is important for our ultimate application. The ability to do 

inference at 30fps would satisfy our use case. To do so, we have an 

architecture where we capture the game window with Open Broadcaster 

Software (OBS) streaming that to a nginx RTMP gateway, which then 

multiplexes the stream to both the python inference server as well as a 

separate source for debugging or streaming live to the player.  

 

 

7 Conclusion 

The algorithm performed well enough to serve as a foundation for higher-

order actions in the virtual world. Additionally, we were able to get the 

online inference working at a desirable framerate, making the application 

useful for using in real-time.  

 

There is considerable work to be done to refine the model and achieve better 

results. First, we could collect more data. We collected data with a single 

account over the course of a few days, but could horizontally scale the 

operation by running more game clients in parallel. Second, we could 

experiment with synthetic data combined with real data. This method was 

effective for Kim, et. al for 2d sprites, and the strategy might generalize to 

3d models.  
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