
Semantic-aware Image Similarity Search
1st Yueming Zhang
SUNET ID 06487360

Stanford CS230
Vancouver, BC, Canada
mzcanada@stanford.edu

Abstract—This paper seeks improvement on image similarity
search. In addition to support a query image as the only input
parameter, we will also support additional query attributes as
combined search criteria. These additional attributes include
supplemental text attributes and image native attributes. Sup-
plemental text attributes are image’s title, caption or category,
as a natural target of NLP. Image native attributes are attributes
embedded in the image itself such as color. Combining text and
image attributes injects semantic meaning from NLP to an image,
enables composite search and semantic arithmetic operation on
image data. Our result shows 84% accuracy of image search and
79% accuracy of image arithmetic operation.

I. INTRODUCTION

Convolution Neural Network (CNN) advanced reverse Im-
age Search in recent years. The implementation is typically
two steps: (a) use CNN as feature extractor to create image
embedding database, and (b) use nearest neighbour algorithm
to perform approximate matching. Such search accepts one
image as the query image, and return multiple images as the
output. This type of search doesn’t support combined filter,
i.e. query by an image and a supplement text attribute as an
additional refinement filter. Able to interactively supplement
a text attribute on a stock photo site, or a sub-category
attribute on an e-commerce site are critical for user experience.
Concretely, this paper has two goals:
(1) Create semantic aware composite embedding: combine
image feature, natural language feature (GloVe), and other
image native features (multiple colors of an image)
(2) Enable interactive search: A mechanism to query such
model with query-time adjustable filters, and support sub-
second response time on million-scale images
These two goals are tightly interrelated: the information stored
in the composite embedding space must be sensitive to the
query weight of each search criteria. These two goals act
together to full-fill below use cases:

• a user upload a query picture with mountains at the
background to perform similarity search. Because no
other query criteria, the algorithm assigns 100% weight
to the picture, and 0% to other attributes.

• After seeing the returned pictures, the user decides to
adding ‘vehicle’ to the foreground, so he supplements
the text ”vehicle” as an additional query criterion

• The algorithm now balance the weight between the image
and text ‘vehicle’, and return pictures with both elements.
After seeing the new images, the user may increase or

decrease the importance of ‘vehicle’ in the picture by
adjusting the weight. The result is as shown in Fig [6].

• Then the user may only want to have ‘car’, so he
replace the text ‘vehicle’ with ‘car’. However, there is
no ‘car’ in any picture has a mountain background. The
algorithm then leverage semantic meaning of ‘car’, return
semantically closer pictures, i.e. a mountain with ‘truck’,
rather than a mountain with ‘flower’, because ‘truck’ is
semantically closer to ‘car’ than ‘flower’.

Clearly, the network needs to learn from both picture
content, and picture title, and bridge the gap, i.e. even a
picture’s title doesn’t contain ‘car’, the network needs to learn
from the content if there is a car.

II. RELATED WORK

NLP and Image Embedding. NLP embedding has been
thoroughly studied in recent years. Language vector represen-
tation in latent space demonstrated outstanding performance
of linear arithmetic semantic relationship (king-queen=man-
woman) in various language model such as word2vec and
GloVe as discussed in [5] and [6]. These NLP-based latent
space is surprisingly similar to the CNN-based image embed-
ding in computer vision. Both fields rely heavily on creating a
high-dimensional embedding as the unique representation for
images and words. Both fields have pre-trained models that can
be used to extract these embedding, such as VGG16/ResNet
for image, and GloVe/Bert for NLP. One key difference
between language embedding and image embedding is that, the
former is semantic-aware, while the later isn’t. For example,
in NLP embedding space, the distance between a car and a
road is closer than the distance between the a boat and the
road. But in image embedding space, a picture with a car may
not be closer to a picture with road than a picture with ocean.

Bridge the gap between image and NLP. In addition,
recent studies on image and text correlation resulted plenty of
papers about image/text two way translation: image caption-
ing, and search image by text. Among which are reliable image
classification [1], image description generation [2], image
annotation and search [3], attention-guided multi-modal search
[4], and more. To bridge the gap between image and NLP,
many of these current papers determine the optimal weight
distribution at training time, and yield hard-coded weights that
are not adjustable at query time. These studies can not be



Fig. 1. Left: create Composite Embedding based on 3 objectives. Objective 1: reduce the cosine distance between each picture’s feature vector (imgi) and the
picture label’s NLP vector; Objective 2: reduce the cosine distance between the two vectors:IMGi and TXTi, which are generated through linear arithmetic
operation. and 3: mapping RGB to LAB color space. Middle: store embedding in Annoy Index for fast approximate nearest neighbour search. Right: retrieval
by image and a text with adjustable weight, observing increasing weight of ‘car’ or decreasing weight of ‘snow’. Also note a ‘gondola’ shown up because of
the closer semantic distance to a ‘car’

directly used to meet the goal of this paper, but serve as a
solid foundation to advance image similarity search.

III. APPROACH

There are three parts of work to enable end-to-end inter-
active search experience: 1. train a Projector Model to create
Composite Embedding. 2. create color extractor to determine
5 colors from each picture and append to the Composite
Embedding, and 3. storage and in-memory presentation of the
embedding that enables query with adjustable weights and sub-
second response time on million-scales images.

We leverage pre-trained CNN model, Efficient Net
B3(EFN3), as the backbone to extract features from images.
Although many pre-trained models such as VGG, ResNet,
Inception, etc. are available, EFN3 is at a sweet spot balancing
between search accuracy and computational cost. The feature
embedding created by Efficient Net (and other models) do not
have semantic meaning. The primary goal of the Projector
model is to create a one way mapping from image embedding
to NPL embedding so that the closer images are semantically
relevant. We will discuss experiments that lead to the choice
of the final model architecture and the end to end solution.

A. Experiments

The first attempt (baseline) is to use a sequential model to
map image embedding to NLP embedding (generated from
caption/label of the image). The feature output from EFN3
is used as the image embedding, which is the input of
our Projector Model. Output of the Projector Model is the

projected embedding. The objective is to minimize the distance
between the projected embedding and the NLP embedding.
This approach works but has two major issues:

• EFN3 is an image classification model. The goal of
this model is to accurately classify the most dominant
object in the image. The extracted feature also sufficiently
represent this most dominant object so the image can
be classified correctly. As a result, the feature of less
dominant objects may not be sufficiently represented.
This misaligned with our goal as NLP embedding often
contain more information than the dominant object as
shown in Fig (4), i.e. ‘Boy Standing Against Trees’. The
information of less dominant object and the localization
awareness might be lost before reaching the last layer of
EFN3.

• To solve above issue, we need to extract information
from earlier layers of EFN3. Making all layers of EFN3
trainable could guide the network to focus on relevant
image patches. However, we found out that training the
whole network is too computationally expensive to be a
viable solution.

After solve above two issues, ideally minimizing the dis-
tance between the projected embedding and NLP embedding
should be sufficient to create the semantic linkage. However,
our further experiments showed that image retrieval is accu-
rate, but not arithmetic (image + text) offset retrieval as shown
in Fig [5]. Our proposed model address issues discovered from
these experiments.



Fig. 2. Our Projector Model. Backbone: EFN3 is used as the feature extractor. In addition of extracting feature vector from the final layer, the output of
two middle layers are also extracted and feed into the regional sliding window. Regional Interest Sliding Window: we apply Average Pooling to create 14
regions from the later layers to maintain regional awareness. These 14 regions are: one region for the whole image, 4 regions from top batch normalization
layer, and 9 regions from earlier block6 layer. FC Layers is a sequential model to map GloVe Text Embedding.

B. The Model

Our Projector model is defined in Fig [2]. To keep the
regional awareness, we extract output from two middle layers
of the backbone, and then split images in the two layers into 4
tiles and 9 tiles, respectively. It’s common for object detection
tasks to run sliding window in more fine-grained steps and
on more layers to identify each bounding box location. Our
goal is to correlate image content with text description, thus,
bounding box is not required. The 14 tiles (aforementioned
13, and the feature of the whole image) are sufficient to learn
such linkage.

The two objectives defined in Fig [1] leads to following loss
function:

Lossi = cos(imgi, txti) + cos(IMGi, TXTi)

txti =

∑n
j=1 Vj

n
IMGi = imgi + Vrand, TXTi = txti + Vrand

(1)

The first part of the loss function is to meet Objective 1:
map an image vector to text vector. The second part is used
to improve the accuracy of the second objective, so that we
can add (or remove) a word with adjustable weight from a
picture. Vj denotes the embedding of jth token in the image
label (length = n). The Vj is extracted from each token in the
image label using GloVe dictionary. txti is the mean of all
vectors of words in the label. IMGi = imgi + Vrand, is the
summation of an image’s feature vector (imgi) and a random
word’s NLP vector (Vrand). TXTi = txti + Vrand, is the
summation of the label’s NLP vector (txti) and the random
word’s NLP vector;

C. Noisy Label

Since the Projector model bridge the gap between image
and text, we would expect the new embedding space has clear
semantic meaning. However, because noisy image label con-
tains various type and form of words, it requires preprocessing
before calculate the embedding. We use nltk WordNet package

performed two steps after tokenization: (1) remove stopping
words, i.e. a, the, this, myself, etc. (2) word stemming to
convert word into it’s base form. We also evaluated Part-Of-
Speech filer and word frequency threshold filter, but found
these two filters, although can greatly improve accuracy, will
negatively impacting search experience. We skipped the last
two filters.

D. Image Color

Image colors need to be part of the composite embedding
to make the color search-able. We initially attempted K-
Means to extract 5 RGB colors, but found out K-means is
too computational expensive. We later switched to a sampling
approach that 100 times faster with acceptable performance.
The distance between two RGB colors don’t proportionally
reflect human perception, for example, human commonly
perceive RGB below 30 as black and not sensitive to the color
changes at this range. We converted RGB to LAB color space
to align with human perception.

E. The query with dynamic weight

We use approximate nearest neighbour (ANN) search open
source package (Annoy) to achieve sub-second response time
on million-scale data. ANN search takes one input query
vector, and returns multiple vectors with distance in ascending
order. This caused two challenges:
(1) it doesn’t support conditional parameter. When a user only
query by image (without any colors), we need only query the
image and ignore the color embedding. One option is to create
two embedding: image embedding and color embedding. We
search the image embedding first and then narrow down the
result with color filter. However, this approach significantly
slow down the query, because the image query needs to return
a large number of records as the input of the secondary color
search.
(2) one picture contains multiple colors, a query needs to
return the image if one color is close enough to the query
color. Unfortunately no ANN algorithm supports queries like:



if color1 == ‘red’ or color2 == ‘red’, etc.

We duplicate each image’s feature vector into five vectors
with identical image embedding, but different color embed-
ding. This supports efficient color search, enable us to use
below query to adjust weight before passing into the ANN
search.

Query = (1− p)× Vquery + p× Vcolor

Vquery =
Vimg + Vtxt ∗ w

w + 1

(2)

The equation support two query-time adjustable parameters:
w and p, where w ∈ [−∞,∞] denotes the weight of the
arithmetic word, p ∈ [0, 1] denotes the weight of input color.
This makes color, text, and image itself all optional: When w
is large, the algorithm ignores the query picture content and
use the text as the only criteria.

F. Training

It’s very computational expensive if we include EFN3 in
the training pipeline. Since we don’t plan to train EFN3
parameters, there is no need to run images through EFN3
for every forward propagation. We run all images through
EFN3 once, and store the output (as shown in Fig [2] in a
database. This drastically speed up the overall training process.
We use Adam optimizer, batch size 64, and use callback to log
training metrics. The accuracy calculation can’t be done within
the single mini-batch because of the arithmetic operation. We
again rely on Keras callback at the end of each epoch to
perform custom accuracy calculation.

IV. DATASET

Fig. 3. Each image has one label contains multiple words. This labels describe
the content of a image. Typically a label describes two or three dominant
objects at different region of a picture

The experiments are based on 100,000 pictures of a stock
photo website. These pictures are in compressed .jpg format
with resolution typically around 1000 * 1000 pixels. Each

pixel has RGB value between 0-255.
Each image has one label contains multiple words, as shown
in Fig [3]. These labels typically describe two or three most
dominant element in the picture, i.e. ‘Cropped hand driving
car’, or ‘Young woman riding bicycle against landscape’.
Simple classification of such image will reveal correlation
between the description of the most dominant element and
the most dominant element itself. However, since each label
typically describe two or three elements in different regions,
it’s not effective to simply using image classification backbone.

Fig. 4. Each image has one label contains multiple words. There are total
17,622 unique words after word cleansing, and in average 7 words per image.
The 1st column, Top Words, shows some most used words in the dataset

Each label typically contains 3 to 20 words. The average
length of all labels is 7 words. Labels are noisy in two
perspectives: a. may not have clear association with a specific
element in the picture, for example the top right picture in
Fig [3] has a label ‘Man sitting on road against sky during
sunset’, which omitted the motorcycle. and b. labels contain
words without a clear visual indication, such as ‘On’, ‘View’,
‘Against’, etc. as shown in Fig [4].

V. EVALUATION METRICS

Fig. 5. Our model outperformed baseline on both Image retrieval (Obj1),
and Image Arithmetical (image + text) retrieval (Obj2) accuracy. The image
arithmetical linear retrieval, (such as a Mountain Picture + a word ’Car’),
outperformed baseline by a substantial margin

We evaluate the two metrics that align with the first two
objectives: Single Image Search Accuracy Obj1, and Image +
Text composite search Accuracy Obj2. Imgn denotes the top
n results (query by image) from composite embedding space.
Txtn denotes the top n results (query by label) from the native
NLP embedding space (GloVe). We define query score as

f(i) =

{
0, if Imgn ∩ Txtn = ∅
1, otherwise

(3)

here f(i) is 1 if query by the image’s vector and query by
the image label’s vector yield overlapping result. Finally the
accuracy of Objective 1 is defined as:

Obj1 =

∑m
i=1 f(i)

m



Fig. 6. Qualitative Evaluation. Top: Remove Element From a Picture: Query by a picture of snow-covered mountain range returned similar pictures at the
top row. Then we gradually remove snow by a weight of 0.2, 0.5 and 1.0. 2nd, 3rd and 4th rows clearly show that the retreat of snow, while still maintain
the characteristic of the original query picture: mountain. Bottom: Add Element to a Picture We query by a picture of snow-capped mountain peak, and
result is shown in the first row. Then we add an element of Car to the picture by weight of 1.0 and 2.0, resulted in the 2nd and 3rd rows. Observing the
weight increase of car from 2nd to the 3rd. Two interesting outcomes: a) 2nd tile in the 2nd row shows multiple cars, while the title contains nothing
related to car, indicating the netwok learned from the picture content, and b) 3rd tile in the 2nd row shows a road, demonstrating the semantic awareness of
the model as a road has closer distance to a car

Accuracy of Objective 2, Obj2, is defined similarly except
adding a random word’s vector to the query image’s vector,
and add the same vector to the image label’s vector. The
random natural also introduced a helpful regularization effect
allowing train longer.

Baseline result is measured from a sequential model that
minimize the cosine distance between image vector and text
vector (equivalent to Obj1(Fig[1]) alone), without middle layer
feature extraction. Since retrieval typically returns multiples
images, we evaluated both top 5 and top 20 accuracy.

Quantitative evaluation result is described in Fig [5]. The top
5 query accuracy and top 5 arithmetical accuracy reached 84%
and 79% respectively. Qualitative evaluation result is described
in Fig [6], demonstrated the semantic awareness of the new
embedding space.

VI. ERROR ANALYSIS

Analyzing the errors revealed two patterns. 1) Accuracy
decreases as the sentence gets longer. We use the mathematical

mean of each word’s GloVe vector as the target embedding.
This approach is less effective when there are lots of words in
the sentence. 2) Accuracy decreases for the words appear at
lower frequency. The training sample size of less used words
is not sufficient for the network to learn the pattern.

VII. CONCLUSION

This paper explored ways to bridge image embedding
with language (GloVe) embedding to support Image + Text
composite search with adjustable weight. Images in the new
embedding space have clear semantic meaning that support
linear arithmetic query, as shown in Fig [6]. Our method’s
unsupervised nature, and the effectiveness on noisy data
(downloaded from a website), demonstrated the potential to
replicate such approach in a multi-tenant environment. Future
research can replacing GloVe with BERT to support longer
sentences with attention mechanisms.



REFERENCES

[1] Devise: A deep visual-semantic embedding model. An-
drea Frome, Greg S Corrado, Jon Shlens, Samy Bengio,
Jeff Dean, Tomas Mikolov, et. al

[2] Deep visual-semantic alignments for generating image
descriptions. Andrej Karpathy and Li Fei-Fei.

[3] Associating neural word embeddings with deep image
representations using fisher vectors. Benjamin Klein, Guy
Lev, Gil Sadeh, and Lior Wolf.

[4] Attention guided Multi-modal Correlation Learning for
Image Search. Kan Chen, Trung Bui, et. al.

[5] Unifying Visual-Semantic Embeddings with multi-modal
Neural Language Models. Ryan Kiros, Ruslan etl.

[6] Linguistic regularities in continuous space word repre-
sentations. Tomas Mikolov, Wen-tau Yih, and Geoffrey
Zweig.

[7] Feature extraction on large dataset with Deep Learning:
https://www.pyimagesearch.com/2019/05/27/keras-
feature-extraction-on-large-datasets-with-deep-learning/

[8] EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks: https://arxiv.org/abs/1905.11946

[9] The Ultimate Guide to 12 Di-
mensionality Reduction Techniques:
https://www.analyticsvidhya.com/blog/2018/08/dimensionality-
reduction-techniques-python/

[10] Approximate Nearest Neighbors by AnnoyIndex:
https://github.com/spotify/annoy

[11] Ann Benchmarks.com: http://ann-benchmarks.com/
[12] DeViSE: A Deep Visual-Semantic Embedding Model

(Google, afrome, et. al)
[13] Joint Visual-Textual Embedding for Multimodal Style

Search (Amazon, Gil Sadeh, et. al)
[14] Efficient Large-Scale Multi-Modal Classification (Face-

book: dkiela, et. al)
[15] Face recognition: A literature survey. Zhao, W.; Chel-

lappa, R.; Phillips, P. J.; and Rosenfeld, A.
[16] Cnn features off-the-shelf: an astounding baseline for

recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
Razavian, A. S.; Azizpour, H.; Sullivan, J.; and Carlsson

[17] Dynamic pooling and unfolding recursive autoencoders
for paraphrase detection. Richard Socher, Eric H Huang,
Jeffrey Pennin, Christopher D Manning, and Andrew Y
Ng.

[18] A multiplicative model for learning distributed text-based
attribute representations. Ryan Kiros, Richard S Zemel,
and Ruslan Salakhutdinov.


	introduction
	related work
	approach
	Experiments
	The Model
	Noisy Label
	Image Color
	The query with dynamic weight
	Training

	Dataset
	Evaluation Metrics
	Error Analysis
	conclusion

